

MATH 1552 COURSE SYLLABUS (E-PERSON SECTIONS), StMmer 2023					
Teatative Ceerse Schedule 					
Wed	M-	Tom	*od	In-	Fir
1	Mef 15 Sention 48 A As dervitus	$\begin{aligned} & \text { Mey } 16 \\ & \text { Catco mown } \\ & \text { wses } \end{aligned}$	May 17 Sectives 5.1-3: Ansa ander the euve		$\begin{aligned} & \text { Mey 17 } \\ & \text { Sectone } 53: \text { The Diffiris } \\ & \text { litegral } \end{aligned}$
${ }^{2}$	May 22 Sevties 53: Ma Doflinte litigral eves Section 5.4: The Fendeneral Teesse al Calentar		May 24 Serties $\$ 4$ The Funderveial Theonen af Calindes rees. Wiloene norry an nthaner potr ane	$\begin{array}{\|l} \hline \text { May } 28 \\ \text { WS } 53 \\ \text { Owiest } 51(48,51-53) \end{array}$	May 25 Serion S5 Inteprive ly Saldintion
3	Mry 27 No Class Mnnatal Din	$\begin{aligned} & \text { Mays } \\ & \text { wss4 } \\ & \text { wsisss } \end{aligned}$	Mrg 3 Sention 5: Amer Strwer Clave		hen 2 Section 8:2. lesegratice lo Farts
4	ine 3 Sevties 83: Freen of Tig Finetions		nat Revipollor Fed I		hay Serime 4 Tiremenvic starition
5	Na 12 Sestien 8.: Pretial tractions Section 45: L.'Tloptal't	$\begin{aligned} & \begin{array}{l} \text { her } 13 \\ \text { w } 884 \\ \text { ws } \end{array} \end{aligned}$	Las 14 Sertion R.8. Inpwiper Inticpale	$\begin{aligned} & \text { Sis is } \\ & \text { ws } 8.45 \\ & \text { Owie } 83\left(\begin{array}{ll} (4-25) \end{array}\right. \end{aligned}$	Jan 16 Section 10. : Sequesces
6	$\begin{aligned} & \text { Mocks } \\ & \text { nocuss } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { naxis } \\ & \text { wske } \\ & \text { wsio } \\ & \hline \end{aligned}$	Ren 21 Sectien 102: Miflabe Seles	han 22 WS 10.1 ane 	Nen 23 Sention 10.): lingeral Tee
${ }^{7}$	han 26 Sentioe 14 4: Conparien Tests	$\begin{aligned} & \text { h= } 27 \\ & \text { ws } 162 \\ & w>103 \end{aligned}$	heir Sertioe 13:S: Rase und Rest Tests Revirw for Tot?	han 29 Tuten(4.4.85, 45, 8. 18.148.3	Janso Sucsion 10: cont. Sevion lés Alematigy Series
$\stackrel{1}{ }$	mis noclats Tidpendener Deq	Nat nocuass Stider Recen	Ms Sention 106 teen Section 147: Nuser merisa	Nas W5 10.4 Ws 105 	hal Section 10.7, ceen.
\cdots	mal 10 Saction 10s-las Tylte palysumide end series	$\begin{aligned} & \hline \begin{array}{l} 2111 \\ w \times 106 \\ w>10 . \end{array}, \end{aligned}$	312 Sertices 10-5 103 , cont	MII Ws $10 \mathrm{~s}-3 \mathrm{~s}$ 	M14 Sectove 10.5-103, coen.
10	MI7 Sectiens 10 S-tag eme	$\begin{array}{\|l} \hline \text { Mis } \\ \text { Ws } 108.389 \\ \text { O vmina) } \\ \hline \end{array}$	Sill Sertiens 108. 102, oent	Tet es as atas	N121 Smetion $6: 1$: Vedunes hy Dods
11	M34 Sectien 6:1: Veluresty Cylinatical Slath Nisal Review	ग2 W8 $61-62$ Lait dey for Move havand	$\begin{array}{\|l\|} \hline \text { M26 } \\ \text { Realieg Dey } \end{array}$	M127	$\begin{aligned} & \text { MIS } \\ & \text { ENMLEXAM } \\ & \text { W2:AM-218PM } \end{aligned}$
12	Mal	人)=1	20. 2	Ans ${ }^{\text {a }}$	A $=4$

THEOREM 10-Direct Comparison Test
Let $\sum a_{n}$ and $\sum b_{n}$ be two series with $0 \leq a_{n} \leq b_{n}$ for all n. Then

1. If $\sum b_{n}$ converges, then $\sum a_{n}$ also converges.
2. If Σa_{n} diverges, then $\sum b_{n}$ also diverges.

THEOREM 11-Limit Comparison Test
Suppose that $a_{n}>0$ and $b_{n}>0$ for all $n \geq N$ (N an integer).

1. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ and $c>0$, then $\sum a_{n}$ and Σb_{n} both converge or both diverge.
2. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
3. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Root Test

Lefi $\sum_{=} e$, bea series with all postive terms.
LeR-lin $\sqrt{e_{0}}$

(0) If $R>1$, then $\sum \mathrm{\sum}$, diverges.
(e) If $R=1$, then the len is INCOVCUSIVEME

Alternating Series Test

Let $\sum_{i} a_{e}$ be an altemating series.
(a) If $\sum_{k}\left|a_{k}\right|$ converges, then the series converges absolutely.
(b) If (a) fails, then if :
i) $\left\{a_{n}\right\}$ is a decreasing sequence, and
ii) $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$,
then the series converges conditionally.
(c) Otherwise, the series diverges.

exercises 10.2 Section 10.2: 7, 29, 45, 49, 59, 63, 79, 95
 (extra practice: 65, 67, 71, 77, 84, 94, 96)
 Finding nth Partial Sums

In Exercises 1-6, find a formula for the nth partial sum of each series and use it to find the series' sum if the series converges.

1. $2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\cdots+\frac{2}{3^{n-1}}+\cdots$
2. $\frac{9}{100}+\frac{9}{100^{2}}+\frac{9}{100^{3}}+\cdots+\frac{9}{100^{n}}+\cdots$
3. $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots+(-1)^{n-1} \frac{1}{2^{n-1}}+\cdots$
4. $1-2+4-8+\cdots+(-1)^{n-1} 2^{n-1}+\cdots$
5. $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{(n+1)(n+2)}+\cdots$
6. $\frac{5}{1 \cdot 2}+\frac{5}{2 \cdot 3}+\frac{5}{3 \cdot 4}+\cdots+\frac{5}{n(n+1)}+\cdots$

Series with Geometric Terms

In Exercises 7-14, write out the first eight terms of each series to show how the series starts. Then find the sum of the series or show that it diverges.
7. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}$
8. $\sum_{n=2}^{\infty} \frac{1}{4^{n}}$
9. $\sum_{n=1}^{\infty}\left(1-\frac{7}{4^{n}}\right)$
10. $\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}}$
11. $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)$
12. $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}-\frac{1}{3^{n}}\right)$
13. $\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)$
14. $\sum_{n=0}^{\infty}\left(\frac{2^{n+1}}{5^{n}}\right)$

In Exercises 15-22, determine if the geometric series converges or diverges. If a series converges, find its sum.
15. $1+\left(\frac{2}{5}\right)+\left(\frac{2}{5}\right)^{2}+\left(\frac{2}{5}\right)^{3}+\left(\frac{2}{5}\right)^{4}+\cdots$
16. $1+(-3)+(-3)^{2}+(-3)^{3}+(-3)^{4}+\cdots$
17. $\left(\frac{1}{8}\right)+\left(\frac{1}{8}\right)^{2}+\left(\frac{1}{8}\right)^{3}+\left(\frac{1}{8}\right)^{4}+\left(\frac{1}{8}\right)^{5}+\cdots$
18. $\left(\frac{-2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{3}+\left(\frac{-2}{3}\right)^{4}+\left(\frac{-2}{3}\right)^{5}+\left(\frac{-2}{3}\right)^{6}+\cdots$
19. $1-\left(\frac{2}{e}\right)+\left(\frac{2}{e}\right)^{2}-\left(\frac{2}{e}\right)^{3}+\left(\frac{2}{e}\right)^{4}-\cdots$
20. $\left(\frac{1}{3}\right)^{-2}-\left(\frac{1}{3}\right)^{-1}+1-\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)^{2}-\cdots$
21. $1+\left(\frac{10}{9}\right)^{2}+\left(\frac{10}{9}\right)^{4}+\left(\frac{10}{9}\right)^{6}+\left(\frac{10}{9}\right)^{8}+\cdots$
22. $\frac{9}{4}-\frac{27}{8}+\frac{81}{16}-\frac{243}{32}+\frac{729}{64}-\cdots$

Repeating Decimals
Express each of the numbers in Exercises 23-30 as the ratio of two integers.
23. $0 . \overline{23}=0.232323 \ldots$
24. $0 . \overline{234}=0.234234234 \ldots$
25. $0 . \overline{7}=0.7777 \ldots$
26. $0 . \bar{d}=0 . d d d d \ldots$, where d is a digit
27. $0.0 \overline{6}=0.06666 \ldots$
28. $1 . \overline{414}=1.414414414 \ldots$
29. $1.24 \overline{123}=1.24123123123 \ldots$
30. $3 . \overline{142857}=3.142857142857$. .

Using the n th-Term Test
In Exercises 31-38, use the n th-Term Test for divergence to show that the series is divergent, or state that the test is inconclusive.
31. $\sum_{n=1}^{\infty} \frac{n}{n+10}$
32. $\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)(n+3)}$
33. $\sum_{n=0}^{\infty} \frac{1}{n+4}$
34. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+3}$
35. $\sum_{n=1}^{\infty} \cos \frac{1}{n}$
36. $\sum_{n=0}^{\infty} \frac{e^{n}}{e^{n}+n}$
37. $\sum_{n=1}^{\infty} \ln \frac{1}{n}$
38. $\sum_{n=0}^{\infty} \cos n \pi$

Telescoping Series

In Exercises 39-44, find a formula for the nth partial sum of the series and use it to determine if the series converges or diverges. If a series converges, find its sum.
39. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$
40. $\sum_{n=1}^{\infty}\left(\frac{3}{n^{2}}-\frac{3}{(n+1)^{2}}\right)$
41. $\sum_{n=1}^{\infty}(\ln \sqrt{n+1}-\ln \sqrt{n})$
42. $\sum_{n=1}^{\infty}(\tan (n)-\tan (n-1))$
43. $\sum_{n=1}^{\infty}\left(\cos ^{-1}\left(\frac{1}{n+1}\right)-\cos ^{-1}\left(\frac{1}{n+2}\right)\right)$
44. $\sum_{n=1}^{\infty}(\sqrt{n+4}-\sqrt{n+3})$
mu the sum of each series in Exercises 45-52.
45. $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$
46. $\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}$
47. $\sum_{n=1}^{\infty} \frac{40 n}{(2 n-1)^{2}(2 n+1)^{2}}$
48. $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$
49. $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$
50. $\sum_{n=1}^{\infty}\left(\frac{1}{2^{1 / n}}-\frac{1}{2^{1 /(n+1)}}\right)$
51. $\sum_{n=1}^{\infty}\left(\frac{1}{\ln (n+2)}-\frac{1}{\ln (n+1)}\right)$
52. $\sum_{n=1}^{\infty}\left(\tan ^{-1}(n)-\tan ^{-1}(n+1)\right)$

Convergence or Divergence

Which series in Exercises 53-76 converge, and which diverge? Give reasons for your answers. If a series converges, find its sum.
53. $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}$
54. $\sum_{n=0}^{\infty}(\sqrt{2})^{n}$
55. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3}{2^{n}}$
56. $\sum_{n=1}^{\infty}(-1)^{n+1} n$
57. $\sum_{n=0}^{\infty} \cos \left(\frac{n \pi}{2}\right)$
58. $\sum_{n=0}^{\infty} \frac{\cos n \pi}{5^{n}}$
59. $\sum_{n=0}^{\infty} e^{-2 n}$
60. $\sum_{n=1}^{\infty} \ln \frac{1}{3^{n}}$
61. $\sum_{n=1}^{\infty} \frac{2}{10^{n}}$
62. $\sum_{n=0}^{\infty} \frac{1}{x^{n}}, \quad|x|>1$
63. $\sum_{n=0}^{\infty} \frac{2^{n}-1}{3^{n}}$
64. $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}$
65. $\sum_{n=0}^{\infty} \frac{n!}{1000^{n}}$
66. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
67. $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{4^{n}}$
68. $\sum_{n=1}^{\infty} \frac{2^{n}+4^{n}}{3^{n}+4^{n}}$
85. $\sum_{n=0}^{\infty} \sin ^{n} x$
86. $\sum_{n=0}^{\infty}(\ln x)^{n}$

Theory and Examples

87. The series in Exercise 5 can also be written as

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} \text { and } \sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)}
$$

Write it as a sum beginning with (a) $n=-2$, (b) $n=0$, (c) $n=5$.
88. The series in Exercise 6 can also be written as

$$
\sum_{n=1}^{\infty} \frac{5}{n(n+1)} \text { and } \sum_{n=0}^{\infty} \frac{5}{(n+1)(n+2)}
$$

Write it as a sum beginning with (a) $n=-1$, (b) $n=3$, (c) $n=20$.
89. Make up an infinite series of nonzero terms whose sum is
a. 1
b. -3
c. 0 .
90. (Continuation of Exercise 89.) Can you make an infinite series of nonzero terms that converges to any number you want? Explain.
91. Show by example that $\sum\left(a_{n} / b_{n}\right)$ may diverge even though $\sum a_{n}$ and $\sum b_{n}$ converge and no b_{n} equals 0 .
92. Find convergent geometric series $A=\Sigma a_{n}$ and $B=\Sigma b_{n}$ that illustrate the fact that $\sum a_{n} b_{n}$ may converge without being equal to $A B$.
93. Show by example that $\Sigma\left(a_{n} / b_{n}\right)$ may converge to something other than A / B even when $A=\Sigma a_{n}, B=\Sigma b_{n} \neq 0$, and no b_{n} equals 0 .
94. If Σa_{n} converges and $a_{n}>0$ for all n, can anything be said about $\Sigma\left(1 / a_{n}\right)$? Give reasons for your answer.
95. What happens if you add a finite number of terms to a divergent series or delete a finite number of terms from a divergent series? Give reasons for your answer.
96. If Σa_{n} converges and Σb_{n} diverges, can anything be said about their term-by-term sum $\Sigma\left(a_{n}+b_{n}\right)$? Give reasons for your answer.
97. Make up a geometric series $\sum a r^{n-1}$ that converges to the number 5 if
a. $a=2$
b. $a=13 / 2$.
98. Find the value of b for which

$$
1+e^{b}+e^{2 b}+e^{3 b}+\cdots=9
$$

99. For what values of r does the infinite series

$$
1+2 r+r^{2}+2 r^{3}+r^{4}+2 r^{5}+r^{5}+\cdots
$$

converge? Find the sum of the series when it converges.
100. The accompanying figure shows the first five of a sequence of squares. The outermost square has an area of $4 \mathrm{~m}^{2}$. Each of the other squares is obtained by joining the midpoints of the sides of the squares before it. Find the sum of the areas of all the squares.

101. Drug dosage A patient takes a 300 mg tablet for the control of high blood pressure every morning at the same time. The concentration of the drug in the patient's system decays exponentially at a constant hourly rate of $k=0.12$.
a. How many milligrams of the drug are in the patient's system just before the second tablet is taken? Just before the third tablet is taken?
b. In the long run, after taking the medication for at least six months, what quantity of drug is in the patient's body just before taking the next regularly scheduled morning tablet?
102. Show that the error $\left(L-s_{n}\right)$ obtained by replacing a convergent geometric series with one of its partial sums s_{n} is $a r^{n} /(1-r)$.
103. The Cantor set To construct this set, we begin with the closed interval $[0,1]$. From that interval, remove the middle open interval $(1 / 3,2 / 3)$, leaving the two closed intervals $[0,1 / 3]$ and $[2 / 3,1]$. At the second step we remove the open middle third interval from each of those remaining. From [$0,1 / 3$] we remove the open interval ($1 / 9,2 / 9$), and from $[2 / 3,1]$ we remove $(7 / 9,8 / 9)$, leaving behind the four closed intervals $[0,1 / 9],[2 / 9,1 / 3],[2 / 3,7 / 9]$, and $[8 / 9,1]$. At the next step, we remove the middle open third interval from each closed interval left behind, so $(1 / 27,2 / 27)$ is removed from $[0,1 / 9]$, leaving the closed intervals $[0,1 / 27]$ and $[2 / 27,1 / 9] ;(7 / 27,8 / 27)$ is removed from [2/9,1/3], leaving behind [$2 / 9,7 / 27]$ and [$8 / 27,1 / 3]$, and so forth. We continue this process repeatedly without stopping, at each step removing the open third interval from every closed interval remaining behind from the preceding step. The numbers remaining in the interval [0,1], after all open middle third intervals have been removed, are the points in the Cantor set (named after Georg Cantor, 1845-1918). The set has some interesting properties.
a. The Cantor set contains infinitely many numbers in $[0,1]$. List 12 numbers that belong to the Cantor set.
b. Show, by summing an appropriate geometric series, that the total length of all the open middle third intervals that have been removed from [0,1] is equal to 1 .
104. Helga von Koch's snowflake curve Helga von Koch's snowflake is a curve of infinite length that encloses a region of finite area. To see why this is so, suppose the curve is generated by starting with an equilateral triangle whose sides have length 1 .
a. Find the length L_{n} of the nth curve C_{n} and show that $\lim _{n \rightarrow \infty} L_{n}=\infty$.
b. Find the area A_{n} of the region enclosed by C_{n} and show that $\lim _{n \rightarrow \infty} A_{n}=(8 / 5) A_{1}$.

105. The largest circle in the accompanying figure has radius 1 . Consider the sequence of circles of maximum area inscribed in semicircles of diminishing size. What is the sum of the areas of all of the circles?

Direct Comparison Test

In Exercises 1-8, use the Direct Comparison Test to determine if each series converges or diverges.

1. $\sum_{n=1}^{\infty} \frac{1}{n^{2}+30}$
2. $\sum_{n=1}^{\infty} \frac{n-1}{n^{4}+2}$
3. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$
4. $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$
5. $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{3 / 2}}$
6. $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$
7. $\sum_{n=1}^{\infty} \sqrt{\frac{n+4}{n^{4}+4}}$
8. $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{\sqrt{n^{2}+3}}$

Limit Comparison Test
In Exercises 9-16, use the Limit Comparison Test to determine if each series converges or diverges.
9. $\sum_{n=1}^{\infty} \frac{n-2}{n^{3}-n^{2}+3}$
(Hint: Limit Comparison with $\left.\sum_{n=1}^{\infty}\left(1 / n^{2}\right)\right)$
10. $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^{2}+2}}$
(Hint: Limit Comparison with $\left.\sum_{n=1}^{\infty}(1 / \sqrt{n})\right)$
11. $\sum_{n=2}^{\infty} \frac{n(n+1)}{\left(n^{2}+1\right)(n-1)}$
12. $\sum_{n=1}^{\infty} \frac{2^{n}}{3+4^{n}}$
13. $\sum_{n=1}^{\infty} \frac{5^{n}}{\sqrt{n} 4^{n}}$
14. $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{5 n+4}\right)^{n}$
15. $\sum_{n=2}^{\infty} \frac{1}{\ln n}$
(Hint: Limit Comparison with $\sum_{n=2}^{\infty}(1 / n)$)
16. $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n^{2}}\right)$
(Hint: Limit Comparison with $\sum_{n=1}^{\infty}\left(1 / n^{2}\right)$)

Determining Convergence or Divergence

Which of the series in Exercises 17-56 converge, and which diverge?
Use any method, and give reasons for your answers.
17. $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}+\sqrt[3]{n}}$
18. $\sum_{n=1}^{\infty} \frac{3}{n+\sqrt{n}}$
19. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{2^{n}}$
20. $\sum_{n=1}^{\infty} \frac{1+\cos n}{n^{2}}$
21. $\sum_{n=1}^{\infty} \frac{2 n}{3 n-1}$
22. $\sum_{n=1}^{\infty} \frac{n+1}{n^{2} \sqrt{n}}$
23. $\sum_{n=1}^{\infty} \frac{10 n+1}{n(n+1)(n+2)}$
24. $\sum_{n=3}^{\infty} \frac{5 n^{3}-3 n}{n^{2}(n-2)\left(n^{2}+5\right)}$
25. $\sum_{n=1}^{\infty}\left(\frac{n}{3 n+1}\right)^{n}$
26. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+2}}$
27. $\sum_{n=3}^{\infty} \frac{1}{\ln (\ln n)}$
28. $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{3}}$
29. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$
30. $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{3 / 2}}$
31. $\sum_{n=1}^{\infty} \frac{1}{1+\ln n}$
32. $\sum_{n=2}^{\infty} \frac{\ln (n+1)}{n+1}$
33. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$
34. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}$
35. $\sum_{n=1}^{\infty} \frac{1-n}{n 2^{n}}$
36. $\sum_{n=1}^{\infty} \frac{n+2^{n}}{n^{2} 2^{n}}$
37. $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$
38. $\sum_{n=1}^{\infty} \frac{3^{n-1}+1}{3^{n}}$
39. $\sum_{n=1}^{\infty} \frac{n+1}{n^{2}+3 n} \cdot \frac{1}{5 n}$
40. $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{3^{n}+4^{n}}$
41. $\sum_{n=1}^{\infty} \frac{2^{n}-n}{n 2^{n}}$
42. $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n} e^{n}}$
43. $\sum_{n=2}^{\infty} \frac{1}{n!}$
(Hint: First show that $(1 / n!) \leq(1 / n(n-1))$ for $n \geq 2$.)
44. $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+2)!}$
45. $\sum_{n=1}^{\infty} \sin \frac{1}{n}$
46. $\sum_{n=1}^{\infty} \tan \frac{1}{n}$
47. $\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n^{1.1}}$
48. $\sum_{n=1}^{\infty} \frac{\sec ^{-1} n}{n^{1.3}}$
49. $\sum_{n=1}^{\infty} \frac{\operatorname{coth} n}{n^{2}}$
50. $\sum_{n=1}^{\infty} \frac{\tanh n}{n^{2}}$
51. $\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}$
52. $\sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n^{2}}$
53. $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$
54. $\sum_{n=1}^{\infty} \frac{1}{1+2^{2}+3^{2}+\cdots+n^{2}}$
55. $\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{2}}$
56. $\sum_{n=2}^{\infty} \frac{(\ln n)^{2}}{n}$

Theory and Examples

57. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.
58. If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of nonnegative numbers, can anything be said about $\sum_{n=1}^{\infty}\left(a_{n} / n\right)$? Explain.
59. Suppose that $a_{n}>0$ and $b_{n}>0$ for $n \geq N$ (N an integer). If $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=\infty$ and $\sum a_{n}$ converges, can anything be said about $\sum b_{n}$? Give reasons for your answer.
60. Prove that if $\sum a_{n}$ is a convergent series of nonnegative terms, then $\sum a_{n}^{2}$ converges.
61. Suppose that $a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}=\infty$. Prove that $\sum a_{n}$ diverges.
62. Suppose that $a_{n}>0$ and $\lim _{n \rightarrow \infty} n^{2} a_{n}=0$. Prove that $\sum a_{n}$ converges.

EXERCISES 10.5

Using the Ratio Test

In Exercises 1-8, use the Ratio Test to determine if each series converges absolutely or diverges.

1. $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+2}{3^{n}}$
3. $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$
4. $\sum_{n=1}^{\infty} \frac{2^{n+1}}{n 3^{n-1}}$
5. $\sum_{n=1}^{\infty} \frac{n^{4}}{(-4)^{n}}$
6. $\sum_{n=2}^{\infty} \frac{3^{n+2}}{\ln n}$
7. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}(n+2)!}{n!3^{2 n}}$
8. $\sum_{n=1}^{\infty} \frac{n 5^{n}}{(2 n+3) \ln (n+1)}$

Using the Root Test

In Exercises 9-16, use the Root Test to determine if each series converges absolutely or diverges.
9. $\sum_{n=1}^{\infty} \frac{7}{(2 n+5)^{n}}$
10. $\sum_{n=1}^{\infty} \frac{4^{n}}{(3 n)^{n}}$
11. $\sum_{n=1}^{\infty}\left(\frac{4 n+3}{3 n-5}\right)^{n}$
12. $\sum_{n=1}^{\infty}\left(-\ln \left(e^{2}+\frac{1}{n}\right)\right)^{n+1}$
23. $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{1.25^{n}}$
24. $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{3^{n}}$
25. $\sum_{n=1}^{\infty}(-1)^{n}\left(1-\frac{3}{n}\right)^{n}$
26. $\sum_{n=1}^{\infty}\left(1-\frac{1}{3 n}\right)^{n}$
27. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
28. $\sum_{n=1}^{\infty} \frac{(-\ln n)^{n}}{n^{n}}$
29. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)$
30. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)^{n}$
31. $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{e}}$
32. $\sum_{n=1}^{\infty} \frac{n \ln n}{(-2)^{n}}$
33. $\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}$
34. $\sum_{n=1}^{\infty} e^{-n}\left(n^{3}\right)$
35. $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$
36. $\sum_{n=1}^{\infty} \frac{n 2^{n}(n+1)!}{3^{n} n!}$
37. $\sum_{n=1}^{\infty} \frac{n!}{(2 n+1)!}$
38. $\sum_{n=1}^{\infty} \frac{n!}{(-n)^{n}}$
39. $\sum_{n=2}^{\infty} \frac{-n}{(\ln n)^{n}}$
40. $\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{(n / 2)}}$
41. $\sum_{n=1}^{\infty} \frac{n!\ln n}{n(n+2)!}$
42. $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{3} 2^{n}}$
43. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
44. $\sum_{n=1}^{\infty} \frac{(2 n+3)\left(2^{n}+3\right)}{3^{n}+2}$
45. $\sum_{n=3}^{\infty} \frac{2^{n}}{n^{2}}$
46. $\sum_{n=3}^{\infty} \frac{2^{n^{2}}}{n^{2^{n}}}$
13. $\sum_{n=1}^{\infty} \frac{-8}{(3+(1 / n))^{2 n}}$
14. $\sum_{n=1}^{\infty} \sin ^{n}\left(\frac{1}{\sqrt{n}}\right)$
15. $\sum_{n=1}^{\infty}(-1)^{n}\left(1-\frac{1}{n}\right)^{n^{2}}$
(Hint: $\lim _{n \rightarrow \infty}(1+x / n)^{n}=e^{n}$)
16. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{1+n}}$

Determining Convergence or Divergence
In Exercises 17-46, use any method to determine if the series converges or diverges. Give reasons for your answer.
17. $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^{n}}$
18. $\sum_{n=1}^{\infty}(-1)^{n} n^{2} e^{-n}$
19. $\sum_{n=1}^{\infty} n!(-e)^{-n}$
20. $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$
21. $\sum_{n=1}^{\infty} \frac{n^{10}}{10^{n}}$
22. $\sum_{n=1}^{\infty}\left(\frac{n-2}{n}\right)^{n}$
55. $a_{1}=\frac{1}{3}, \quad a_{n+1}=\sqrt[n]{a_{n}}$
56. $a_{1}=\frac{1}{2}, \quad a_{n+1}=\left(a_{n}\right)^{n+1}$

Convergence or Divergence
Which of the series in Exercises 57-64 converge, and which diverge? Give reasons for your answers.
57. $\sum_{n=1}^{\infty} \frac{2^{n} n!n!}{(2 n)!}$
58. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(3 n)!}{n!(n+1)!(n+2)!}$
59. $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}$
60. $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{n}}{n^{\left(n^{2}\right)}}$
61. $\sum_{n=1}^{\infty} \frac{n^{n}}{2^{\left(n^{2}\right)}}$
62. $\sum_{n=1}^{\infty} \frac{n^{n}}{\left(2^{n}\right)^{2}}$
63. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot \cdots \cdot(2 n-1)}{4^{n} 2^{n} n!}$
64. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdots \cdots \cdot(2 n-1)}{[2 \cdot 4 \cdot \cdots \cdot(2 n)]\left(3^{n}+1\right)}$
65. Assume that b_{n} is a sequence of positive numbers converging to $4 / 5$. Determine if the following series converge or diverge.
a. $\sum_{n=1}^{\infty}\left(b_{n}\right)^{1 / n}$
b. $\sum_{n=1}^{\infty}\left(\frac{5}{4}\right)^{n}\left(b_{n}\right)$
c. $\sum_{n=1}^{\infty}\left(b_{n}\right)^{n}$
d. $\sum_{n=1}^{\infty} \frac{1000^{n}}{n!+b_{n}}$
66. Assume that b_{n} is a sequence of positive numbers converging to $1 / 3$. Determine if the following series converge or diverge.
a. $\sum_{n=1}^{\infty} \frac{b_{n+1} b_{n}}{n 4^{n}}$
b. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!b_{1}^{2} b_{2}^{2} \cdots b_{n}^{2}}$

Theory and Examples
67. Neither the Ratio Test nor the Root Test helps with p-series. Try them on
and show that both tests fail to provide information about convergence.

EXERCISES 10.6 (extra practice: 20, 22, 27, 31, 91)

Determining Convergence or Divergence
In Exercises 1-14, determine if the alternating series converges or diverges. Some of the series do not satisfy the conditions of the Alternating Series Test.

1. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$
2. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{3 / 2}}$
3. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n 3^{n}}$
4. $\sum_{n=2}^{\infty}(-1)^{n} \frac{4}{(\ln n)^{2}}$
5. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$
6. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}+5}{n^{2}+4}$
7. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n^{2}}$
8. $\sum_{n=1}^{\infty}(-1)^{n} \frac{10^{n}}{(n+1)!}$
(9. $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n}{10}\right)^{n}$
root
sest.
9. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\ln n}{n}$
10. $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{n}\right)$
11. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt{n}+1}{n+1}$
12. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3 \sqrt{n+1}}{\sqrt{n}+1}$

Absolute and Conditional Convergence
Which of the series in Fxercises 15 - 48 eenverge absolutely, which converge, and which diverge? Give reasons for your answers.
人15. $\sum_{n=1}^{\infty}(-1)^{n+1}(0.1)^{n}$
16. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(0.1)^{n}}{n}$
17. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$
18. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\sqrt{n}}$
19. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$
(20.) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n!}{2^{n}}$
21. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n+3}$
(22. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}$
23. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3+n}{5+n}$
24. $\sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{n+5^{n}}$
25. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1+n}{n^{2}}$
26. $\sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt[n]{10})$
27. $\sum_{n=1}^{\infty}(-1)^{n} n^{2}(2 / 3)^{n}$
28. $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{n \ln n}$
29. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\tan ^{-1} n}{n^{2}+1}$
30. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n-\ln n}$
31. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+1}$
32. $\sum_{n=1}^{\infty}(-5)^{-n}$
33. $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$
34. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}$
35. $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n \sqrt{n}}$
36. $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n}$
37. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)^{n}}{(2 n)^{n}}$
38. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n!)^{2}}{(2 n)!}$

Error Estimation

In Exercises 49-52, estimate the magnitude of the error involved in using the sum of the first four terms to approximate the sum of the entire series.
49. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$
(50.) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{10^{n}}$
51. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(0.01)^{n}}{n}$
As you will see in Section 10.7, the sum is $\ln (1.01)$.
52. $\frac{1}{1+t}=\sum_{n=0}^{\infty}(-1)^{n} t^{n}, \quad 0<t<1$

In Exercises 53-56, determine how many terms should be used tc estimate the sum of the entire series with an error of less than 0.001 .
53. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}+3}$
54. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+1}$
55. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{(n+3 \sqrt{n})^{3}}$
56. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\ln (\ln (n+2))}$

In Exercises 57-82, use any method to determine whether the series converges or diverges. Give reasons for your answer.
57. $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{n}}$
58. $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}$
59. $\sum_{n=1}^{\infty}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)$
60. $\sum_{n=1}^{\infty}\left(\frac{1}{2 n+1}-\frac{1}{2 n+2}\right)$
61. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+2)!}{(2 n)!}$
62. $\sum_{n=2}^{\infty} \frac{(3 n)!}{(n!)^{3}}$
63. $\sum_{n=1}^{\infty} n^{-2 / \sqrt{5}}$
64. $\sum_{n=2}^{\infty} \frac{3}{10+n^{4 / 3}}$
65. $\sum_{n=1}^{\infty}\left(1-\frac{2}{n}\right)^{n^{2}}$
66. $\sum_{n=0}^{\infty}\left(\frac{n+1}{n+2}\right)^{n}$
67. $\sum_{n=1}^{\infty} \frac{n-2}{n^{2}+3 n}\left(-\frac{2}{3}\right)^{n}$
68. $\sum_{n=0}^{\infty} \frac{n+1}{(n+2)!}\left(\frac{3}{2}\right)^{n}$

Math 1552 Section 10.7

Power Series

8	dar noclass Indigenderee Dey	Ja NoCl-ss Shadet Recen	drs Section 10.A: coet. Section 10.7: Power nerien	Mal6 WS 10.4 W8 10.5 Ovie B5 (10.4.105) 2	hal 7 Section to.7, cone.
9	MI 10 Sections 10.8-10.9. Tyyler polywenids and series	$\begin{array}{\|l\|l\|} \hline \text { hut11 } \\ \text { Ws to. } \\ \text { Ws } 10.7 \\ \hline \end{array}$	ful2 Sectiona 10.8-10.9, ceel.	Mal 13 कצ $10.8 . t 0$. Quis 56 (10 os-10s)	Jal 14 Sections 10.8-10.9, come.
10	M17 Sections tos-10. 0 , coet.	hal ts WS tos-t0.9 0 veniona)	JI9 Sections 10. -10.9 , cent.	$\begin{aligned} & \text { Sal } 20 \\ & \text { Test } 23 \text { (18.4-12. } \end{aligned}$	Jal 21 Sectiae 6.1: Volamen loy Dhiks
11	M1 24 Section 6.1: Volumes by Cylintrical Siels Final Review	Nu2s WS $6.1-6.2$ Leit doy/for MML Ammerat	R125 Realing Duy	3127	$\begin{aligned} & \text { H1 } 28 \\ & \text { EINALEXAM } \\ & \text { H:2PAM-2:1ePM } \end{aligned}$
12	M3	Aag 1	Ang2	Ang 3	Aag 4

Q: For which x-values does this power series converge?
$\sum_{k=1}^{\infty} \frac{x^{k}}{k}$

Radius and I.C.

To find the radius of convergence of a power series in standard form, use the ratio or root test to find:

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \text { or } L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}
$$

(i) If $L=0$, then $R=\infty$ and I.C. is all real numbers.
(i) If $L=\infty$, then $R=0$ and I.C. is just $x=C$.
(ii) If L is positive and finite, then $R=1 / L$, and the series converges for $|x-c|<R$. You must also check the endpoints.
$\sum_{k=1}^{\infty} \frac{(4-3 x)^{k}}{\sqrt{2 k+5}}$
$\sum_{k=0}^{\infty} \frac{2^{k}}{k^{3}}(x-1)^{k}$

How to Test a Power Series for Convergence

1. Use the Ratio Test (or Root Test) to find the largest open interval where the series converges absolutely,

$$
|x-a|<R \quad \text { or } \quad a-R<x<a+R
$$

2. If R is finite, test for convergence or divergence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the Integral Test, or the Alternating Series Test.
3. If R is finite, the series diverges for $|x-a|>R$ (it does not even converge conditionally) because the nth term does not approach zero for those values of x.

Differentiation and Integration

$$
\begin{aligned}
& \frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty} k a_{k} x^{k-1} \\
& \int\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right) d x=\sum_{k=0}^{\infty} \frac{a_{k}}{k+1} x^{k+1}+C
\end{aligned}
$$

The radius and interval of convergence are preserved under differentiation and Integration.

Example 2:

(a) Find a power series for the function $f(x)=\ln (1+x)$.
For what values of x is this formula valid?
(b) Find a power series representation for $f(x)=\frac{1}{(1-x)^{2}}$.

EXERCISES 10.7

Intervals of Convergence

In Exercises 1-36, (a) find the series' radius and interval of convergence. For what values of x does the series converge (b) absolutely, (c) conditionally?

1. $\sum_{n=0}^{\infty} x^{n}$
2. $\sum_{n=0}^{\infty}(x+5)^{n}$
3. $\sum_{n=0}^{\infty}(-1)^{n}(4 x+1)^{n}$
4. $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n}$
5. $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}$
6. $\sum_{n=0}^{\infty}(2 x)^{n}$
7. $\sum_{n=0}^{\infty} \frac{n(x+3)^{n}}{5^{n}}$
8. $\sum_{n=0}^{\infty} \frac{n x^{n}}{4^{n}\left(n^{2}+1\right)}$
9. $\sum_{n=0}^{\infty} \frac{\sqrt{n} x^{n}}{3^{n}}$
10. $\sum_{n=1}^{\infty} \sqrt[n]{n}(2 x+5)^{n}$
11. $\sum_{n=1}^{\infty}\left(2+(-1)^{n}\right) \cdot(x+1)^{n-1}$
12. $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}(x-2)^{n}}{3 n}$
13. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n} x^{n}$
14. $\sum_{n=1}^{\infty}(\ln n) x^{n}$
15. $\sum_{n=1}^{\infty} n^{n} x^{n}$
16. $\sum_{n=0}^{\infty} n!(x-4)^{n}$
17. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^{n}}{n 2^{n}}$
18. $\sum_{n=0}^{\infty}(-2)^{n}(n+1)(x-1)^{n}$
19. $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$

Get the information you need about
$\sum 1 /\left(n(\ln n)^{2}\right)$ from Section 10.3 , Exercise 61 .
30. $\sum_{n=2}^{\infty} \frac{x^{n}}{n \ln n}$

Get the information you need about
31. $\sum_{n=1}^{\infty} \frac{(4 x-5)^{2 n+1}}{n^{3 / 2}}$
32. $\sum_{n=1}^{\infty} \frac{(3 x+1)^{n+1}}{2 n+2}$
33. $\sum_{n=1}^{\infty} \frac{1}{2 \cdot 4 \cdot 6 \cdots(2 n)} x^{n}$
34. $\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdots(2 n+1)}{n^{2} \cdot 2^{n}} x^{n+1}$
35. $\sum_{n=1}^{\infty} \frac{1+2+3+\cdots+n}{1^{2}+2^{2}+3^{2}+\cdots+n^{2}} x^{n}$
36. $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})(x-3)^{n}$

In Exercises 37-40, find the series' radius of convergence.
37. $\sum_{n=1}^{\infty} \frac{n!}{3 \cdot 6 \cdot 9 \cdots 3 n} x^{n}$
38. $\sum_{n=1}^{\infty}\left(\frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}\right)^{2} x^{n}$
39. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{2^{n}(2 n)!} x^{n}$
40. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}} x^{n}$
(Hint: Apply the Root Test.)
In Exercises 41-48, use Theorem 20 to find the series' interval of convergence and, within this interval. the sum of the series as a function
7. $\sum_{n=0}^{\infty} \frac{n x^{n}}{n+2}$
8. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n}$
9. $\sum_{n=1}^{\infty} \frac{x^{n}}{n \sqrt{n} 3^{n}}$
10. $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{\sqrt{n}}$
11. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$
12. $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n!}$
13. $\sum_{n=1}^{\infty} \frac{4^{n} x^{2 n}}{n}$
14. $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n^{3} 3^{n}}$
15. $\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n^{2}+3}}$
16. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{\sqrt{n}+3}$
45. $\sum_{n=0}^{\infty}\left(\frac{\sqrt{x}}{2}-1\right)^{n}$
46. $\sum_{n=0}^{\infty}(\ln x)^{n}$
47. $\sum_{n=0}^{\infty}\left(\frac{x^{2}+1}{3}\right)^{n}$
48. $\sum_{n=0}^{\infty}\left(\frac{x^{2}-1}{2}\right)^{n}$

Using the Geometric Series

49. In Example 2 we represented the function $f(x)=2 / x$ as a power series about $x=2$. Use a geometric series to represent $f(x)$ as a power series about $x=1$, and find its interval of convergence.
50. Use a geometric series to represent each of the given functions as a power series about $x=0$, and find their intervals of convergence.
a. $f(x)=\frac{5}{3-x}$
b. $g(x)=\frac{3}{x-2}$
51. Represent the function $g(x)$ in Exercise 50 as a power series about $x=5$, and find the interval of convergence.
52. a. Find the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{8}{4^{n+2}} x^{n}
$$

b. Represent the power series in part (a) as a power series about $x=3$ and identify the interval of convergence of the new series. (Later in the chapter you will understand why the new interval of convergence does not necessarily include all of the numbers in the original interval of convergence.)

Theory and Examples

53. For what values of x does the series
$1-\frac{1}{2}(x-3)+\frac{1}{4}(x-3)^{2}+\cdots+\left(-\frac{1}{2}\right)^{n}(x-3)^{n}+\cdots$
converge? What is its sum? What series do you get if you differentiate the given series term by term? For what values of x does the new series converge? What is its sum?
54. If you integrate the series in Exercise 53 term by term, what new series do you get? For what values of x does the new series converge, and what is another name for its sum?
55. The series

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\cdots
$$

converges to $\sin x$ for all x.
a. Find the first six terms of a series for $\cos x$. For what values of x should the series converge?
b. By replacing x by $2 x$ in the series for $\sin x$, find a series that converges to $\sin 2 x$ for all x.
c. Using the result in part (a) and series multiplication, calculate the first six terms of a series for $2 \sin x \cos x$. Compare your answer with the answer in part (b).
56. The series

Section $10.7: 3,9,11,15,17,27,31,41,43,50$ (extra practice: 13,23)

In Exercises 41-48, use Theorem 20 to find the series' interval of convergence and, within this interval, the sum of the series as a function of x.
41. $\sum_{n=0}^{\infty} 3^{n} x^{n}$
42. $\sum_{n=0}^{\infty}\left(e^{x}-4\right)^{n}$
43. $\sum_{n=0}^{\infty} \frac{(x-1)^{2 n}}{4^{n}}$
44. $\sum_{n=0}^{\infty} \frac{(x+1)^{2 n}}{9^{n}}$
b. Find a series for $\int e^{x} d x$. Do you get the series for e^{x} ? Explain your answer.
c. Replace x by $-x$ in the series for e^{x} to find a series that converges to e^{-x} for all x. Then multiply the series for e^{x} and e^{-x} to find the first six terms of a series for $e^{-x} \cdot e^{x}$.
57. The series

$$
\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\cdots
$$

converges to $\tan x$ for $-\pi / 2<x<\pi / 2$.
a. Find the first five terms of the series for $\ln |\sec x|$. For what values of x should the series converge?
b. Find the first five terms of the series for $\sec ^{2} x$. For what values of x should this series converge?
c. Check your result in part (b) by squaring the series given for $\sec x$ in Exercise 58.
58. The series
$\sec x=1+\frac{x^{2}}{2}+\frac{5}{24} x^{4}+\frac{61}{720} x^{6}+\frac{277}{8064} x^{8}+\cdots$
converges to sec x for $-\pi / 2<x<\pi / 2$.
a. Find the first five terms of a power series for the function $\ln |\sec x+\tan x|$. For what values of x should the series converge?
b. Find the first four terms of a series for $\sec x \tan x$. For what values of x should the series converge?
c. Check your result in part (b) by multiplying the series for $\sec x$ by the series given for $\tan x$ in Exercise 57 .

59. Uniqueness of convergent power series

a. Show that if two power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ are convergent and equal for all values of x in an open interval $(-c, c)$, then $a_{n}=b_{n}$ for every n. (Hint: Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n}$. Differentiate term by term to show that a_{n} and b_{n} both equal $f^{(n)}(0) /(n!)$.)
b. Show that if $\sum_{n=0}^{\infty} a_{n} x^{n}=0$ for all x in an open interval $(-c, c)$, then $a_{n}=0$ for every n.
60. The sum of the series $\sum_{n=0}^{\infty}\left(n^{2} / 2^{n}\right)$ To find the sum of this series, express $1 /(1-x)$ as a geometric series, differentiate both sides of the resulting equation with respect to x, multiply both sides of the result by x, differentiate again, multiply by x again, and set x equal to $1 / 2$. What do you get?
61. The sum of the alternating harmonic series This exercise will show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln 2
$$

answer with uic answei in patt (v).
56. The series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots
$$

converges to e^{x} for all x.
a. Find a series for $(d / d x) e^{x}$. Do you get the series for e^{x} ? Explain your answer.
and

$$
\lim _{n \rightarrow \infty}\left(h_{2 n}-\ln 2 n\right)=\gamma
$$

where γ is Euler's constant.
c. Use these facts to show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\lim _{n \rightarrow \infty} s_{2 n}=\ln 2
$$

62. Assume that the series $\sum a_{n} x^{n}$ converges for $x=4$ and diverges for $x=7$. Answer true (T), false (F), or not enough information given (N) for the following statements about the series.
a. Converges absolutely for $x=-4$
b. Diverges for $x=5$
c. Converges absolutely for $x=-8.5$
d. Converges for $x=-2$
e. Diverges for $x=8$
f. Diverges for $x=-6$
g. Converges absolutely for $x=0$
h. Converges absolutely for $x=-7.1$
63. Assume that the series $\sum a_{n}(x-2)^{n}$ converges for $x=-1$ and diverges for $x=6$. Answer true (T), false (F), or not enough information given (N) for the following statements about the series.
a. Converges absolutely for $x=1$
b. Diverges for $x=-6$
c. Diverges for $x=2$
d. Converges for $x=0$
e. Converges absolutely for $x=5$
f. Diverges for $x=4.9$
g. Diverges for $x=5.1$
h. Converges absolutely for $x=4$
64. Proof of Theorem 21 Assume that $a=0$ in Theorem 21 and that $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges for $-R<x<R$. Let $g(x)=\sum_{n=1}^{\infty} n c_{n} x^{n-1}$. This exercise will prove that $f^{\prime}(x)=g(x)$, that is, $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=g(x)$.
a. Use the Ratio Test to show that $g(x)$ converges for $-R<x<R$.
b. Use the Mean Value Theorem to show that

$$
\frac{(x+h)^{n}-x^{n}}{h}=n c_{n}^{n-1}
$$

for some c_{n} between x and $x+h$ for $n=1,2,3, \ldots$.
c. Show that

8	M3 noclass Independace Day	Ju4 nocless Shalet Recen	MS Section 10.as coet. Section 16.7: Power series	hal6 WS 10.4 ES 105 Quie B5 (10.4.105) 2	hel 7 Section te.7, cone.
9	Mto Sections 10.8-10.9. Tayler polywenids and series	$\begin{array}{\|l\|l\|} \hline \text { 2l11 } \\ \text { ws } 10.6 \\ \text { ws } 10.7 \\ \hline \end{array}$	M12 Sectiona 10.8-10.9, ceet.	MI 13 ms 10. Quis 66 (10.s-10.s)	M1 14 Sectians 10.8-109, comet
10	M17 Sectiona to. 10 - coet	hat is WS tos-tn.9 (3 vemians)	MI Sections 108-109, cone	$\begin{array}{\|l\|} \text { Sal } 20 \\ \text { Test es (aec-120) } \end{array}$	Nal 21 Sectioe 6.1: Volamen loy Dhiks
11		N2s WS 6.1-6.2 Let doy for MML Amencret	Al 25 Realing Duy	3127	$\begin{aligned} & \text { H128 } \\ & \text { EINALEXAM } \\ & \text { H:2PAM-2:1ePM } \end{aligned}$
12	N31	A碞 1	Ang 2	Ang 3	Aag 4

Review Question:

The series: $\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{\sqrt{k^{2}+1}}$

A Converges absolutely
B. Converges conditionally
c. Diverges

Power Series

A power series is an infinite polynomial and

 a function of x :Power series in $x: f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$
Power series in $x-c: f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$

