

CHAPTE

* Calc 1 review
* U-sub
* Piemann sums
* The definite lategral * IBP
* Area betrieen curves
* trig integrals

Things you probably will

Special Cases for Limits at Infinity
If the degree of the numerator is greater than that of the
denominator:

\qquad

$\lim \left(\frac{P(x)}{Q(x)}\right)=\frac{\text { leading coeff. of } P}{\text { leading coeff. of } Q}$
If the degree of the numerator is smaller than that of the
denominator:
$\lim \left(\frac{P(x)}{Q(x)}\right)=0$
... eventually.

Example:
Evaluate the following limits.
(a) $\lim _{x \rightarrow \infty}\left(\frac{3+x^{2}}{9-5 x^{2}}\right)$
(b) $\lim _{x \rightarrow \infty}\left(\frac{3 x^{2}+5 x^{3}}{7 x^{4}-2 x^{3}+4 x^{2}}\right)$
(a) $\lim _{x \rightarrow \infty} \frac{3+x^{2}}{9-5 x^{2}}$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+5 x^{3}}{7 x^{4}-2 x^{2}+4 x^{2}}$

Derivative Rules
Example:
Poomentive $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
Ex a) $\frac{d}{d x} x^{3}=$
(a) $f(x)=x^{3} \tan (x)$
(b) $g(x)=\frac{3 \sec (x)}{2+x \cos (x)}$
(c) $h(x)=\arctan (\ln (5 x))$
(a)

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{3} \tan (x)\right)^{\prime} \\
& =?
\end{aligned}
$$

Remember this?
The Chain Rule

$$
\begin{aligned}
& \text { Let } y=f(u) \operatorname{and} u=g(x) \quad[f(g(x))]^{\prime}= \\
& \text { Then : } \\
& \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& \frac{d}{d x}[f(g(x))]=\left(f^{\prime}(g(x))\right)\left(g^{\prime}(x)\right) \\
& \text { OR } \\
& \frac{d}{d x}[f(s t u f f)]=f^{\prime}(\text { stuff }) \cdot(\operatorname{sunff})^{\prime}
\end{aligned}
$$

(c)

$$
\begin{aligned}
h^{\prime}(x) & =(\arctan (\ln (5 x)))^{\prime} \\
& =?
\end{aligned}
$$

Critical Number/Local Extrema

Example:

The number c is a critical number of f if

$$
f^{\prime}(c)=0 \text { or } f^{\prime}(c) \mathrm{DNE}
$$

We say the point ($c, f(c)$) is a local extrema if $f(c)$ is the smallest or largest value of f for all x-values "close" to c

Find all extreme values for the function below.

$$
f(x)=(x-1)^{2}(x-2)^{2} \text { on }[0,4]
$$

Soln. Need to find critical calves

where $f^{\prime}(x)=0$ \& then
evaluate each region of $[0,4]$
between tu critical calves
(ecg.
use a sigh
chart)

Ole, remembering now...

Absolute Extreme Values

Let f be continuous on $[a, b]$ and differentiable on (a, b). To find the absolute maximum and absolute minimum on $[a, b]$:

1. Find all critical numbers of f on $[a, b]$.
2. Evaluate $f(a), f(b)$, and $f(c)$ for all critical numbers c.
3. The largest value in step 2 is the absolute maximum; the smallest value is the absolute minimum.

Do we need to know this ...?

Some Derivative Formulas

$$
\begin{array}{ll}
\frac{d}{d x}\left[e^{x}\right]=e^{x} \\
\frac{d}{d x}[\sin x]=\cos x & \frac{d}{d x}[\sec x]=\sec x \tan x \\
\frac{d}{d x}[\cos x]=-\sin x & \frac{d}{d x}[\csc x]=-\csc x \cot x \\
\frac{d}{d x}[\tan x]=\sec ^{2} x & \frac{d}{d x}[\cot x]=-\csc ^{2} x
\end{array}
$$

Oh man, that a lot of formulas,...

Derivatives of Inverse Functions

$$
\begin{array}{ll}
\frac{d}{d x}[\ln |u|]=\frac{1}{u} \cdot \frac{d u}{d x} & \frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[a^{u}\right]=a^{u} \ln (a) \frac{d u}{d x} & \frac{d}{d x}\left[\cos ^{-1}(x)\right]=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{u \ln (a)} \frac{d u}{d x} & \frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}}
\end{array}
$$

make it stop 6

Product Rule:
$\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
OR

$$
\frac{d}{d x}[\text { first } \times \text { second }]
$$

$$
=\left(\left[\frac{d}{d x}(\text { first })\right] \times \text { second }\right)+\left(\text { first } \times\left[\frac{d}{d x}(\text { second })\right]\right)
$$

Quotient Rule:
$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
OR
$\frac{d}{d x}\left[\frac{h i}{l o}\right]=\frac{l o \cdot d(h i)-h i \cdot d(l o)}{l o \cdot l o}$

Is this on the exam?

Limit Theorems

> Let $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow \infty} g(x)=M$.
> Then:
> (i) $\lim _{x \rightarrow \infty}[f(x) \pm g(x)]=L \pm M$
> (i) $\lim _{x \rightarrow \infty} \alpha(x)=\alpha L$, where $\alpha \in \Re$
> (iii) $\lim _{x \rightarrow \infty}[f(x) g(x)]=L M$
> (iv) $\lim _{x \rightarrow[}\left[\frac{f(x)}{g(x)}\right]=\frac{L}{M}, M \neq 0$

Welcome to Math 1552 \cos

Syllabus Basics

\propto Your grade will be determined by:
os Classwork Points (CP)
\propto Pre-lecture Videos
$\propto<$ Online homework on MML
\propto Studio Quizzes
cs Exams (Friday evenings)
© Three 75 -minute tests
© For in-person sections exams are during studio (*QUP set up proctoring locally*)
${ }_{C P}$ Tests will be in person on June 8, June 29, July 20
cos Final Examination (not optional)
\propto Thursday, July 28, from 11:20 am - 2:10 pm
\propto Held in-person
$\propto \rightarrow$ Bonus points from CIOS and extra CP

\section*{Grading Rubric *In-person ONLY*
 \cos
 | Assessment | Weight |
| :---: | :---: |
| Classwork | 20% |
 Midterm exams 55\%
 Final Exam* 25%}

Grading Rubric *QUP online ONLY*

Assignment	Maximum Number of Points
Pre-lecture videos	0 CP (36 videos - optional - not for a grade)
Start-of-semester survey, Syllabus Quiz and QUP Gradescope Quiz	30 CP (10 points each)
Online problems on MML	49 CP (13 assignments, divide by 3 to convert MML points to CP)
Studio Quizzes	120 CP (6 quizzes, 20 points each)
Maximum total points for 100% :	130 out of 199
Extra credit	Every extra 1 CP over 130 is converted to 0.05 bonus point on the final exam (ClOS bonus an additional Spt for a max total bonus of 8.45 bonus points on the final exam)

Important Websites

OS

$\mathcal{C R}$ Course Information: canvas.gatech.edu
©R Textbook/Homework Access:
Use the "Pearson Access" tool on Canvas
$\mathfrak{C R}$ On-line Discussions: www.piazza.com (highly recommended)

\& Gradescope:

Use the "Pearson Access" tool on Canvas

Textbook: What to purchase?

\curvearrowright MyMathLab code is required to complete the online assignments.
co You may sign up for temporary access for two weeks.
cs IMPORTANT: Please register through CANVAS, not the MyMathLab site.

Important Policies

C8 Make-ups

\cos

os NO MAKEUPS on studio quizzes, as there are extra points built into the classwork category
\% Contact me right away if you will miss an exam os One make-up policy
\bigcirc Attendance
cs 1 CP per day of attendance with active participation
$\propto \&$ Calculators/websites/phones
cos Not allowed on any quizzes or exams
\cos Zero on the assignment for first offense
os **QUP online-only** students may use calculators for quizzes but not exams

Policies (cont)

$\longrightarrow(58$
${ }_{c}$ Academic Misconduct
os Any cases will be submitted to the Dean's office.
\propto_{8} Disability Services
os Please discuss any accommodations with me.
\& Regrades
cs Submit on Gradescope within one week of receiving your graded paper.
cs Indicate which rubric item was not applied correctly

Math 1552

Section 4.8: Antiderivatives

Tentative Course Schedule
Please use this as an approximate class schedule; section coverage may change depending on the flow of the course Review daystopics may be changed or cancelled in the event of inclement weather or campus closures.

Week	Mon	Tues	Wed	Thurs	Fri
1	May 15 Introduction to Math 1552 Section 4.8: Anti- derivatives	May 16 Calculus review WS 4.8	May 17 Sections 5.1-5.2: Area under the curve	May 18 W8 5.1 WS 5.2-5.3	May 19
Section 5.3: The Definite					
Integral					

Antiderivatives

Definition: We say the function F is an antiderivative of the function f if $F(x)=f(x)$.

Find an anti-derivative for each function below.
(a) $f(x)=\sin (x)+\sqrt{x}$
(b) $g(x)=\frac{1}{4 x^{3}}-\sec ^{2}(x)$
(C) $h(x)=\left(x^{3}-\frac{1}{x}\right)^{2}$

Example
(a) $f(x)=\sin (x)+\sqrt{x}$

So

Some useful
formulas.
Function Antiderivative

$a x^{n}, n \neq-1$	$a \cdot \frac{x^{n+1}}{n+1}$
$\sin (x)$	$-\cos (x)$
$\cos (x)$	$\sin (x)$
$\sec ^{2}(x)$	$\tan (x)$
$\sec (x) \tan (x)$	$\sec (x)$
$\csc ^{2}(x)$	$-\cot (x)$
$\csc (x) \cot (x)$	$-\csc (x)$

Function Antiderivative
$\sin (a x) \quad-\frac{1}{a} \cos (a x)$
$\cos (a x)$
$\frac{1}{a} \sin (a x)$
$\sec ^{2}(a x)$
$\frac{1}{a} \tan (a x)$
$\sec (a x) \tan (a x) \quad \frac{1}{a} \sec (a x)$
$\csc ^{2}(a x)$
$-\frac{1}{a} \cot (a x)$
$\csc (a x) \cot (a x)$
$-\frac{1}{a} \csc (a x)$

Example 2:
A particle travels with an acceleration, in meters per second squared, given by:

$$
a(t)=t-5 t^{2}
$$

Find the particle's velocity and position at time $\mathrm{t}=1$ second if the initial position is 2 m and the initial velocity is $10 \mathrm{~m} / \mathrm{s}$.
$\frac{d}{d x}$ position $=$ velocity
So the anti-derivative of velocity is portion

Ex

Evaluate each indefinite integral.
(a) $\int\left(e^{-5 x}+\sec x(\tan x-\sec x)\right) d x$
(b) $\int\left(\frac{1}{\sqrt{16-x^{2}}}-\frac{2}{x}\right) d x$
(a) $\int e^{-5 x}+\sec x+(\tan x-\sec x) d x$

Derivatives of Inverse Functions

$$
\begin{array}{ll}
\frac{d}{d x}[\ln |u|]=\frac{1}{u} \cdot \frac{d u}{d x} & \frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[a^{u}\right]=a^{u} \ln (a) \frac{d u}{d x} & \frac{d}{d x}\left[\cos ^{-1}(x)\right]=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{u \ln (a)} \frac{d u}{d x} & \frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}}
\end{array}
$$

Wait ... what?

1. $\int_{1}^{e} x \ln \left(x^{4}\right) d x$

Function
Antiderivative

$\sin (a x)$	$-\frac{1}{a} \cos (a x)$
$\cos (a x)$	$\frac{1}{a} \sin (a x)$
$\sec ^{2}(a x)$	$\frac{1}{a} \tan (a x)$
$\sec (a x) \tan (a x)$	$\frac{1}{a} \sec (a x)$
$\csc ^{2}(a x)$	$-\frac{1}{a} \cot (a x)$
$\csc (a x) \cot (a x)$	$-\frac{1}{a} \csc (a x)$

you've got to be joking
3. $\int \frac{2}{x^{2} \sqrt{x^{2}-1}} d x$

Derivatives of Inverse Functions

$$
\begin{array}{ll}
\frac{d}{d x}[\ln |u|]=\frac{1}{u} \cdot \frac{d u}{d x} & \frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[a^{u}\right]=a^{u} \ln (a) \frac{d u}{d x} & \frac{d}{d x}\left[\cos ^{-1}(x)\right]=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{u \ln (a)} \frac{d u}{d x} & \frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}}
\end{array}
$$

not as hard as it lochs
3. $\int\left(\frac{\left(\frac{\sqrt{2}}{} \sqrt{x} \sqrt{2}\right.}{\sqrt{\sqrt{2}}}\right) d x \quad$ Studio WS on Thursday
(c) $h(x)=\frac{1}{x}+2 e^{2 x}$

Find
(1) The anti-derivative
(2) The average value over the interval [1,2]
(3) The definite integral of $h(x)$ over the interval [1,2]

Function	General antiderivative	Fexstion	General antherinative		
1. r^{7}	$\frac{1}{n+1} x^{n+1}+C^{1} n+-1$	$x .1$	$\frac{1}{1}+\cdots$		
2. \sin ix	$\frac{1}{2} \cos k r+C$	8. $\frac{1}{1}$	\|0	x	\mid C. $\mathrm{C}, \mathrm{x}=0$
3. coskr	$\frac{1}{2} \sin d x+C$	12. $\frac{1}{\sqrt{1-x^{2}}}$	$\frac{1}{2} \sin ^{-1} b+C$		
4. $\sec ^{2} \mathrm{ta}$	$\frac{1}{i} \tan k x+c$	11. $\frac{1}{1+k^{3} y^{2}}$	$\frac{1}{4} \tan ^{-1} 2 x+c$		
8. $6 x^{2}$ dx	$\frac{1}{i} \operatorname{coc} k x+C$	12. $\frac{1}{x \sqrt{x^{2}}-1}$	$x^{-1} k x+C_{1} k x>1$		
6. seckrtunks	$\frac{1}{i} \sec k x+c$	B. ${ }^{\text {c }}$	$\left(\frac{1}{a \ln a}\right) d+C_{2} a>0 . a+1$		
7. esctucothr	$-\frac{1}{c} \cos d x+C$				

EXERCISES

43. $\int(-2 \cos n) d t$
44. $\int(-5 \sin \theta) d t$
45. $\int 7 \sin \frac{\theta}{3} d \theta$
46. $\int 3 \cos 5 \theta d \theta$
47. $\int\left(-3 \csc ^{2} x\right) d x$

49. $\int \frac{\operatorname{coc} \theta \cos \theta}{2} d \theta$
50. $\int \frac{2}{5} \sec \theta \tan \theta d \theta$
51. $\int\left(e^{3 x}+5 e^{-2}\right) d x$
52. $\int\left(2 e^{e}-3 x^{-3 x}\right) d x$
53. $\int\left(e^{-2}+4\right) d x$
54. $\int(1.3)^{r} d x$
55. $\int\left(4 \sec x \tan x-2 \sec ^{2} x\right) d x$
56. $\int \frac{1}{2}\left(\cos ^{2} x-\csc x \cot x\right) d x$
57. $\int\left(\sin 2 x-\operatorname{cs}^{2} x\right) d x$

59. $\int \frac{1+\cos 4 t}{2} d t$
6a. $\int \frac{1-\cos 6 t}{2} d t$

Math 1552

Sections 5.1-5.3:

Area under the Curve The Definite Integral

Tentative Course Schedule
Please use this as an approximate class schedule; section coverage may change depending on the flow of the course.
Review daystopics may be changed or cancelled in the event of inclement weather or campus closures.

Week	Mon	Tues	Wed	Thurs	Fri
1	May 15 Introduction to Math 1552 Section 4.8: Anti- derivatives	May 16 Calculus review WS 4.8	May 17 Sections 5.1-5.2: Area under the curve	May 18 WS 5.1 WS 5.2-5.3	May 19 Section 5.3: The Definite Integral

Day 1 Learning Goals

- Understand how to partition an interval
- Draw a picture to approximate the area under the curve with a given number of rectangles
- Compute the Upper and tower sums
- Calculate the midpoint estimate

Riemann Sums

- Idea: Find the area bounded by a function $f(x)$, the lines $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$, and the x -axis.
- Procedure: Break the interval $[a . b]$ into subintervals, and draw a rectangle in each subintervat.
- Summing the areas of the rectangles will approximate the area under the curve.

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n}
$$

Example 1:
Find the upper and lower sums for the function

$$
f(x)=\frac{1}{x^{2}+1}
$$

on the interval $[-1.2]$ with $n=6$ subintervals.

$$
\begin{aligned}
& f(x)=\frac{1}{1+x^{2}} \text { aver }[-1,2] \\
& \text { using } n=6 \text { rectangles. }
\end{aligned}
$$

On the subinterval $\left[x_{i-1}, x_{i}\right]$,
the midpoint is: $\frac{x_{i-1}+x_{i}}{2}$ and the midpoint sum is:

$$
M_{f}=\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x
$$

Average Value
The average value of f on [a,b] is the y-value that would generate a rectangle with the same area as f on [a,b].

$$
A V=\frac{A r e a}{b-a}
$$

GeoGebra Classic

2. Consider the function $f(x)=x+2 x^{2}$ on the interval $[0,2]$. Using a midpoint estimate with $n=4$ subintervals, estimate the average value of f.

```
* *** * 0 % < , #* %
```

e t, +...2t

- , - 20.
$+1 m$

日

a. Use rectangles to estimate how far the car traveled during the 36 sec it took to reach $142 \mathrm{mi} / \mathrm{h}$.
b. Roughly how many seconds did it take the car to reach the halfway point? About how fast was the car going then?

EXERCISES 5.1

Area

In Exercises 1-4, use finite approximations to estimate the area under the graph of the function using
a. a lower sum with two rectangles of equal width.
b. a lower sum with four rectangles of equal width.
c. an upper sum with two rectangles of equal width.
d. an upper sum with four rectangles of equal width.

1. $f(x)=x^{2}$ between $x=0$ and $x=1$.
2. $f(x)=x^{3}$ between $x=0$ and $x=1$.
3. $f(x)=1 / x$ between $x=1$ and $x=5$.
4. $f(x)=4-x^{2}$ between $x=-2$ and $x=2$.

Using rectangles each of whose height is given by the value of the function at the midpoint of the rectangle's base (the midpoint rule). estimate the area under the graphs of the following functions, using first two and then four rectangles.
5. $f(x)=x^{2}$ between $x=0$ and $x=1$.
6. $f(x)=x^{3}$ between $x=0$ and $x=1$.
7. $f(x)=1 / x$ between $x=1$ and $x=5$.
8. $f(x)=4-x^{2}$ between $x=-2$ and $x=2$.

Distance

9. Distance traveled The accompanying table shows the velocity of a model train engine moving along a track for 10 sec . Estimate
the distance traveled by the engine using 10 subintervals of length I with
a. left-endpoint values.
b. right-endpoint values.

Time (sec)	Velocity $(\mathrm{cm} / \mathrm{sec})$	Time (sec)	Velocity $(\mathrm{cm} / \mathrm{sec})$
0	0	6	28
1	30	7	15
2	56	8	5
3	25	9	15
4	38	10	0
5	33		

10. Distance traveled upstream You are sitting on the bank of a tidal river watching the incoming tide carry a bottle upstream. You record the velocity of the flow every 5 minutes for an hour, with the results shown in the accompanying table. About how far upstream did the bottle travel during that hour? Find an estimate using 12 subintervals of length 5 with

5.2 Sigma Notation and Limits of Finite Sums

MATH 1552 COURSE SYLLABUS (IN-PERSON SECTIONS), SUMMER 2023

Tentative Course Schedule
Please use this as an approximate class schedule; section coverage may change depending on the flow of the course. Review days/topics may be changed or cancelled in the event of inclement weather or campus closures.

Week	Mon	Tues	Wed	Thurs	Fri
1	May 15				
Introduction to Math 1552 Section 4.8: Anti- derivatives	May 16 Calculus review WS 4.8	May 17 Sections 5.1-5.2: Area under the curve	May 18 WS 5.1 WS 5.2.5.3	May 19 Section 5.3: The Definite Integral	

- Be able to find the equation for a general Riemann Sum
- Take the limit of your answer to find the actual area beneath the curve
- Understand the definition of the definite integral
- Understand key properties of the definite integral

EXAMPLE 1

$\frac{$| A sum in |
| :--- |
| sigma notation |}{$\sum_{k=1}^{5} k$} Warm-up

$\sum_{k=1}^{3}(-1)^{k} k$
$\sum_{k=1}^{2} \frac{k}{k+1}$
$\sum_{k=4}^{5} \frac{k^{2}}{k-1}$

First example of the day

A marketing company is trying a new campaign. The campaigh lasts for three weeks, and during this time, the company finds that it gains customers as a function of time according to the formula:

$$
C(t)=5 t-t^{2}
$$

where t is time in weeks and the number of customers is given in thousands. Using the general form of the definite integral,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)
$$

calculate the average number of customers gained during the three-week campaign.

General Riemann Sum

Partition the interval $[a, b]$ into n equal pieces:
$a=x_{0}<x_{1}<x_{2}<\ldots<a_{n}=b$
Let x_{i}, be an arbitrary point in the interval $\left[x_{i-1}, x_{i}\right]$.
Then we can estimate the area under the curve between $x=a$ and $x=b$ with the formula:
$A \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$.
Note that: $L_{f} \leq A \leq U_{f}$

What is x_{i}^{*} ?

A. The left-hand endpoint of the subintervat.
B. The tight-hand endpoint of the subinterval.
C. The midpoint of the subinterval D. Any value on the subinterval.

Example 2

Use the method of Riemann Sums to evaluate the following definite integral. Choose $\mathrm{x}_{\mathrm{i}}^{*}$ to be the right-hand endpoint of each subinterval.

$$
\int_{-1}^{2}(x+1)^{2} d x
$$

The Definite Integral

We define the definite integral to be the limit of the Riemann Sum:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Helpful Summation Formulas
(1) $\sum_{n=1}^{i} i=\frac{n(n+1)}{2} \longleftarrow$ how to deal ω / x
(2) $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ how to deal u/ x^{2}
$\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}$
$\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$

If mare practice is needed.
Example 3 :
In a memory experiment, the rate of memorization is measured by the function:

$$
f(t)=-0.006 t^{2}+0.2 t
$$

where t is the time in minutes, and $f(t)$ is the number of words per minute.
(a) How many words are memorized in the first 20 minutes (from $\mathrm{t}=0$ to $\mathrm{t}=20$) ? USE RIEMANN SUMS.
(b) What is the average number of words memorized each minute?

$$
f(t)=-0.006 t^{2}+0.2 t
$$

The Definite Integral
We define the definite integral to be the limit of the Riemann Sum:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Check your understinday

True or False?

- The definite integral represents the total area bounded by the function, the lines $x=a$ and $x=b$, and the x-axis.

The Definite Integral and Area

If the function is always non-negative on [abb], we have found TOTAL AREA under the curve.

If the function takes on negative values, then we have found the NET AREA under the curve.

(a)

Sigma Notation
Write the sums in Exercises 1-6 without sigma notation. Then evaluate them.

1. $\sum_{k=1}^{2} \frac{6 k}{k+1}$
2. $\sum_{k=1}^{3} \frac{k-1}{k}$
3. $\sum_{k=1}^{4} \cos k \pi$
4. $\sum_{k=1}^{5} \sin k \pi$
5. $\sum_{k=1}^{3}(-1)^{k+1} \sin \frac{\pi}{k}$
6. $\sum_{k=1}^{4}(-1)^{t} \cos k \pi$
7. Which of the following express $1+2+4+8+16+32$ in sigma notation?
a. $\sum_{k=1}^{6} 2^{i-1}$
b. $\sum_{k=0}^{5} 2^{k}$
c. $\sum_{k=-1}^{4} 2^{k+1}$
8. $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}$
9. $-\frac{1}{5}+\frac{2}{5}-\frac{3}{5}+\frac{4}{5}-\frac{5}{5}$

Values of Finite Sums

17. Suppose that $\sum_{k=1}^{n} a_{k}=-5$ and $\sum_{k=1}^{n} b_{k}=6$. Find the values of
a. $\sum_{k=1}^{n} 3 a_{k}$
b. $\sum_{i=1}^{n} \frac{b_{k}}{6}$
c. $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)$
d. $\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)$
e. $\sum_{k=1}^{n}\left(b_{k}-2 a_{k}\right)$
18. Suppose that $\sum_{k=1}^{n} a_{k}=0$ and $\sum_{k=1}^{n} b_{k}=1$. Find the values of
a. $\sum_{k=1}^{n} 8 a_{k}$
b. $\sum_{k=1}^{n} 250 b_{k}$
c. $\sum_{k=1}^{n}\left(a_{k}+1\right)$
d. $\sum_{k=1}^{n}\left(b_{k}-1\right)$

Evaluate the sums in Exercises 19-32.
19. a. $\sum_{k=1}^{10} k$
b. $\sum_{k=1}^{10} k^{2}$
c. $\sum_{k=1}^{10} k^{3}$
20. a. $\sum_{k=1}^{13} k$
b. $\sum_{k=1}^{13} k^{2}$
c. $\sum_{k=1}^{13} k^{3}$
21. $\sum_{k=1}^{7}(-2 k)$
22. $\sum_{k=1}^{5} \frac{\pi k}{15}$
23. $\sum_{k=1}^{6}\left(3-k^{2}\right)$
24. $\sum_{k=1}^{6}\left(k^{2}-5\right)$
25. $\sum_{k=1}^{5} k(3 k+5)$
26. $\sum_{k=1}^{7} k(2 k+1)$
27. $\sum_{k=1}^{5} \frac{k^{3}}{225}+\left(\sum_{k=1}^{5} k\right)^{3}$
28. $\left(\sum_{k=1}^{7} k\right)^{2}-\sum_{i=1}^{7} \frac{k^{3}}{4}$
29. a. $\sum_{k=1}^{7} 3$
b. $\sum_{k=1}^{500} 7$
c. $\sum_{k=3}^{254} 10$
30. a. $\sum_{k=9}^{36} k$
b. $\sum_{k=1}^{17} k^{2}$
c. $\sum_{k=18}^{71} k(k-1)$
31. a. $\sum_{k=1}^{n} 4$
b. $\sum_{k=1}^{n} c$
c. $\sum_{k=1}^{n}(k-1)$
8. Which of the following express $1-2+4-8+16-32$ in sigma notation?
a. $\sum_{k=1}^{6}(-2)^{k-1}$
b. $\sum_{k=0}^{5}(-1)^{k} 2^{k}$
c. $\sum_{k=-2}^{3}(-1)^{k+1} 2^{k+2}$
9. Which formula is not equivalent to the other two?
a. $\sum_{k=2}^{4} \frac{(-1)^{k-1}}{k-1}$
b. $\sum_{k=0}^{2} \frac{(-1)^{k}}{k+1}$
c. $\sum_{k=-1}^{1} \frac{(-1)^{k}}{k+2}$
10. Which formula is not equivalent to the other two?
a. $\sum_{k=1}^{4}(k-1)^{2}$
b. $\sum_{k=-1}^{3}(k+1)^{2}$
c. $\sum_{k=-3}^{-1} k^{2}$

Express the sums in Exercises 11-16 in sigma notation. The form of your answer will depend on your choice for the starting index.
11. $1+2+3+4+5+6$
12. $1+4+9+16$
13. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$
14. $2+4+6+8+10$
32. a. $\sum_{k=1}^{n}\left(\frac{1}{n}+2 n\right)$
b. $\sum_{k=1}^{n} \frac{c}{n}$
c. $\sum_{k=1}^{n} \frac{k}{n^{2}}$
33. $\sum_{k=1}^{50}\left[(k+1)^{2}-k^{2}\right]$
34. $\sum_{k=2}^{20}[\sin (k-1)-\sin k]$
35. $\sum_{k=7}^{30}(\sqrt{k-4}-\sqrt{k-3})$
36. $\sum_{k=1}^{40} \frac{1}{k(k+1)} \quad\left(\right.$ Hint: $\left.\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}\right)$

Riemann Sums

In Exercises 37-42, graph each function $f(x)$ over the given interval. Partition the interval into four subintervals of equal length. Then add to your sketch the rectangles associated with the Riemann sum $\sum_{k=1}^{4} f\left(c_{2}\right) \Delta x_{k}$. given that c_{k} is the (a) left-hand endpoint, (b) righthand endpoint, (c) midpoint of the k th subinterval. (Make a separate sketch for each set of rectangles.)
37. $f(x)=x^{2}-1,[0,2] \quad$ 38. $f(x)=-x^{2},[0,1]$
39. $f(x)=\sin x, \quad[-\pi, \pi]$
40. $f(x)=\sin x+1,[-\pi, \pi]$
41. Find the norm of the partition $P=\{0,1.2,1.5,2.3,2.6,3\}$.
42. Find the norm of the partition $P=\{-2,-1.6,-0.5,0,0.8,1\}$.

Limits of Riemann Sums
For the functions in Exercises 43-50, find a formula for the Riemann sum obtained by dividing the interval $[a, b]$ into n equal subintervals and using the right-hand endpoint for each c_{k}. Then take a limit of these sums as $n \rightarrow \infty$ to calculate the area under the curve over $[a, b]$.
43. $f(x)=1-x^{2}$ over the interval $[0,1]$.
44. $f(x)=2 x$ over the interval $[0,3]$.
45. $f(x)=x^{2}+1$ over the interval $[0,3]$.
46. $f(x)=3 x^{2}$ over the interval $[0,1]$.
47. $f(x)=x+x^{2}$ over the interval $[0,1]$.
48. $f(x)=3 x+2 x^{2}$ over the interval $[0,1]$.
49. $f(x)=2 x^{3}$ over the interval $[0,1]$.
50. $f(x)=x^{2}-x^{3}$ over the interval $[-1,0]$.
5.3 The Definite Integral

DEFINITION Let $f(x)$ be a function defined on a closed interval $[a, b]$. We say that a number J is the definite integral of f over $[a, b]$ and that J is the limit of the Riemann sums $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ if the following condition is satisfied:

Given any number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that for every partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ with $\|P\|<\delta$ and any choice of c_{k} in $\left[x_{k-1}, x_{k}\right]$, we have

$$
\left|\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}-J\right|<\varepsilon .
$$

FIGURE 5.1 The area of a region R cansot be found by a simple formula.

A Formula for the Riemann Sum with Equal-Width Subintervals

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right)\left(\frac{b-a}{n}\right) \tag{1}
\end{equation*}
$$

able 5.6 Rules satisfied by definite integrals

1. Onder of Integration: $\int_{b}^{b} f(x) d x=-\int_{a}^{b} f(x) d x$

Adeflaition
2. Zero Width Interval: $\int_{a}^{a} f(x) d x=0$

K
3. Constant Multiple: $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$

Aay conatiat :
4. Sum and Difference: $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. Additivity: $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
6. Max-Min Inequality: If f has maximum value max f and minimum value $\min f$ on $[a, b]$, then
$(\min f) \cdot(b-a) \leq \int_{a}^{b} f(x) d x \leq(\max f) \cdot(b-a)$.
7. Domination: If $f(x) \geq g(x)$ on $[a, b]$ then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$

If $f(x) \geq 0$ on $[a, b]$ then $\int_{a}^{b} f(x) d x \geq 0$. specit ane

EXAMPLE 2 To illustrate some of the rules, we suppose that

$$
\int_{-1}^{1} f(x) d x=5, \quad \int_{1}^{4} f(x) d x=-2, \quad \text { and } \quad \int_{-1}^{1} h(x) d x=7
$$

1. $\int_{4}^{1} f(x) d x$
2. $\int_{-1}^{1}[2 f(x)+3 h(x)] d x=$
3. $\int_{-1}^{4} f(x) d x=$

DEFINITION Let $f(x)$ be a function defined on a closed interval $[a, b]$. We say that a number J is the definite integral of f over $[a, b]$ and that J is the limit say that a number J is the definite integral of f over $[a, b]$ and that J is the li
of the Riemann sums $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ if the following condition is satisfied: the Riemann sums $\sum_{k-1} f\left(c_{k}\right) \Delta x_{k}$ if the following condition is satisfied:
Given any number $\varepsilon>0$ there is a corresponding number $\delta>0$ suct for every pation $P=\left\{x_{1}, x_{1}, x_{\}}\right\}$of $[a, b]$ wib $\|P\|<\delta a$ an that for every partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ with $\|P\|<\delta$ and any choice of c_{k} in $\left[x_{k-1}, x_{k}\right]$, we have

$$
\left|\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}-J\right|<\varepsilon .
$$

A Formula for the Riemann Sum with Equal-Width Subintervals

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right)\left(\frac{b-a}{n}\right) \tag{1}
\end{equation*}
$$

Using the Definite Integral Rules

9. Suppose that f and g are integrable and that

$$
\int_{1}^{2} f(x) d x=-4, \quad \int_{1}^{5} f(x) d x=6, \quad \int_{1}^{5} g(x) d x=8
$$

Use the rules in Table 5.6 to find
a. $\int_{2}^{2} g(x) d x$
b. $\int_{5}^{1} g(x) d x$
c. $\int_{1}^{2} 3 f(x) d x$
d. $\int_{2}^{5} f(x) d x$
c. $\int_{1}^{5}[f(x)-g(x)] d x$
f. $\int_{1}^{5}[4 f(x)-g(x)] d x$
10. Suppose that f and h are integrable and that

$$
\int_{1}^{9} f(x) d x=-1, \quad \int_{7}^{9} f(x) d x=5, \int_{7}^{9} h(x) d x=4
$$

Use the rules in Table 5.6 to find
a. $\int_{1}^{9}-2 f(x) d x$
b. $\int_{7}^{y}[f(x)+h(x)] d x$
c. $\int_{,}^{9}[2 f(x)-3 h(x)] d x$
d. $\int_{9}^{1} f(x) d x$
e. $\int_{1}^{7} f(x) d x$
f. $\int_{9}^{7}[h(x)-f(x)] d x$
11. Suppose that $\int_{1}^{2} f(x) d x=5$. Find
a. $\int_{1}^{2} f(u) d u$
b. $\int_{1}^{2} \sqrt{3} f(z) d z$
c. $\int_{2}^{1} f(t) d t$
d. $\int_{1}^{2}[-f(x)] d x$

Example 6:
Given that $\int_{1}^{3} 2 f(x) d x=4$ and $\int_{1}^{0} f(x) d x=-1$, find $\int_{0}^{3} f(x) d x$.
A. -3
B. 1
C. 3
D. 5

EX. Evaluate the definite
integral. (Hint: the Function)
(a) $\int_{-1}^{1} x+x^{3} d x$
(b) $\int_{-\pi}^{\pi} \sin (3 x) d x$
4. $f(x)$ is an even function. If $\int_{0}^{4} f(x) d x=3$ and $\int_{4}^{6} f(x) d x=5$, find $\int_{-4}^{6} f(x) d x$.

Properties of the Definite Integral Let $f(x)$ be continuous on $[a, b]$
(1) $\int_{a}^{b} c d x=c(b-a)$
(2) $\int_{a}^{b} f(x) d x=-\int_{b}^{b} f(x) d x$
(3) $\int_{a}^{a} f(x) d x=0$
(4) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, where $c \in[a, b]$
(5) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
(6) $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

Some More Integral Properties
(1) If $f(x) \geq 0$, then $\int_{a}^{b} f(x) d x \geq 0$.
(2) If $f(x) \geq g(x)$ on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

(3) $\int_{a}^{b} f(x) d x\left|\leq \int_{a}^{b}\right| f(x) \mid d x$
(4) If f is an odd function, then

$$
\int_{-a}^{a} f(x) d x=0
$$

(5) If f is an even function, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

So now, we can combine the ideas Find
(1) The anti-derivative
(2) The average value over the interval $[\mathrm{a}, \mathrm{b}]$
(3) The definite integral of $f(x)$ over the interval $[a, b]$

$$
\int f(x) d x=F(x)+C
$$

$$
\int_{b-a}^{1} \int_{a}^{b} f(x) d x
$$

$$
\int_{a}^{b} f(x) d x=\lim _{x \rightarrow 0} \sum_{k=1}^{n} f\left(x_{x}\right) d x
$$

Finding Average Value
In Exercises 55-62, graph the function and find its average value over the given interval.
55. $f(x)=x^{2}-1 \quad$ on $[0, \sqrt{3}]$
56. $f(x)=-\frac{x^{2}}{2}$ on $[0,3]$
57. $f(x)=-3 x^{2}-1$ on $[0,1]$
58. $f(x)=3 x^{2}-3$ on $[0,1]$
59. $f(t)=(t-1)^{2}$ on $[0,3]$
60. $f(t)=t^{2}-t$ on $[-2,1]$
61. $g(x)=|x|-1$ on a. $[-1,1]$, b. $[1,3]$, and c. $[-1,3]$
62. $h(x)=-|x|$ on a. $[-1,0]$, b. $[0,1]$, and c. $[-1,1]$
(c) $h(x)=\frac{1}{x}+2 e^{2 x}$
5.4 The Fundamental Theorem of Calculus

Tentative Course Schedule
Please use this as an approximate class schedule; section coverage may change depending on the flow of the course.
Review days/topics may be changed or cancelled in the event of inclement weather or campus closures.

Week	Mon	Thes	Wed	Thurs	Fri
1	May 15 Introduction to Math 1552 Section 4.8: Anti- derivatives	May 16 Calculus review WS 4.8	May 17 Sections 5.1-5.2: Area under the curve	Way 18	WS.1

Today's Learning Goals

- Know the statements of the FTC and the Second FTC
- Apply the FTC to evaluating definite integrals using the formulas from Section 4.8
- Apply the Second FTC to differentiate an integral

$$
\begin{equation*}
F(x)=\int_{a}^{x} f(t) d t . \tag{1}
\end{equation*}
$$

 Area $=$

$$
f(t) d t=f(x)
$$

Week	Mon	Tues	Wed	Thurs	Fri
1	May 15 Introduction to Math 1552 Section 4.8: Anti- derivatives	May 16 Calculus review WS 4.8	May 17 Sections 5.1-5.2: Area under the curve	$\begin{aligned} & \text { May } 18 \\ & \text { WS } 5.1 \\ & \text { WS 5.2-5.3 } \end{aligned}$	May 19 Section 5.3: The Definite Integral
2	May 22 Section 5.3: The Definite Integral cont. Section 5.4: The Fundamental Theorem of Calculus	$\begin{aligned} & \text { May } 23 \\ & \text { WS } 5.2-5.3 \text { cont. } \\ & \text { WS } 5.3 \end{aligned}$	May 24 Section 5.4: The Fundamental Theorem of Calculus cont. Welcome survy and syllabus quilz due!	May 25 WS 5.3 cont. Quiz II ($4.8,5.1-5.3$)	$\text { May } 26$ Section 5.5: Integration by Substitution
3	May 29 No CLASS Mernorial Day	$\begin{aligned} & \hline \text { May } 30 \\ & \text { WS 5.4 } \\ & \text { WS 5.5-5.6 } \end{aligned}$	May 31 Section 5.6: Area Between Curves	Jun I WS 5.5-5.6 cont. WS 5.6 Quiz \#2 (5.4-5.6)	Jun 2 Section 8.2: Integration by Parts
4	Jun 5 Section 8.3: Powers of Trig Functions	Jun 6 WS 8.2 WS 8.3	Jun 7 Review for Test 1	$\begin{aligned} & \text { Jun } 8 \\ & \text { Test } \# 1(4.8,5.1-5.6 \text {, } \\ & 8.2-8.3) \end{aligned}$	Jun 9 Section 8.4: Trigonometric Substitution

$$
\begin{equation*}
F(x)=\int_{a}^{x} f(t) d t \tag{1}
\end{equation*}
$$

$$
y=2 x^{\wedge} 2+x \text { over }[0,2]
$$

FIGURE 5.19 The function $F(x)$ defined by Equation (1) gives the area under the graph of f from a to x when f is nonnegative and $x>a$.

FIGURE 5.20 In Equation (1), $F(x)$ is the area to the left of x. Also, $F(x+h)$ is the area to the left of $x+h$. The difference quotient $[F(x+h)-F(x)] / h$ is then approximately equal to $f(x)$, the height of the rectangle shown here.
$F^{\prime}(x)=f(x)$.
$\frac{F(x+h)-F(x)}{h} \approx f(x)$.
$F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x)$.

THEOREM 4-The Fundamental Theorem of Calculus, Part 1
If f is continuous on $[a, b]$, then $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b) and its derivative is $f(x)$:

$$
\begin{equation*}
F^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \tag{2}
\end{equation*}
$$

EXAMPLE Use the Fundamental Theorem to find $d y / d x$ if
(a) $y=\int_{a}^{x}\left(t^{3}+1\right) d t$
(b) $y=\int_{x}^{5} 3 t \sin t d t$
(c) $y=\int_{1}^{x^{2}} \cos t d t$
(d) $y=\int_{1+3 z^{2}}^{4} \frac{1}{2+e^{t}} d t$

Example : Find $\mathrm{F}^{\prime}(2)$.

$$
F(x)=\int_{1}^{x} \frac{t}{t^{3}+3} d t
$$

A. $2 / 7$
B. $2 / 11$
C. $1 / 4$
D. $3 / 44$

If time...

Example : Extension to $2^{\text {nd }}$ FTC

Use this extension:
$\frac{d}{d x}\left[\int_{a(x)}^{b(x)} f(t) d t\right]=f(b(x)) \cdot b^{\prime}(x)-f(a(x)) \cdot a^{\prime}(x)$
to find $F^{\prime}(x)$ if $F(x)=\int_{3 x}^{\cos x} \frac{1}{1+t} d t$.

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

(a) $\int_{0}^{\pi} \cos x d x$
(b) $\int_{-\pi / 4}^{0} \sec x \tan x d x=$
(c) $\int_{1}^{4}\left(\frac{3}{2} \sqrt{x}-\frac{4}{x^{2}}\right) d x=$
(d) $\int_{0}^{1} \frac{d x}{x+1}=$
(e) $\int_{0}^{1} \frac{d x}{x^{2}+1}=$

$$
\int_{1}^{3} \frac{1}{x^{2}} d x
$$

A. $2 / 3$
B. $4 / 3$
C. $26 / 9$
D. $26 / 81$

Example :

The percent of toxin in a lake, where time is in years, is given by the function:

$$
f(t)=50\left(\frac{1}{4}\right)^{t}
$$

Find the average amount of toxin in the lake between years 1 and 3 .

Example 5:

Find the average value of the function:

$$
f(x)=1-x^{2},-1 \leq x \leq 3 .
$$

Then find ac that satisfies the MVT for integration.

Summary:

To find the area between the graph of $y=f(x)$ and the x-axis over the interval $[a, b]$:

1. Subdivide $[a, b]$ at the zeros of f.
2. Integrate f over each subinterval.
3. Add the absolute values of the integrals.

EXAMPLE 8 Find the area of the region between the x-axis and the graph of $f(x)=x^{3}-x^{2}-2 x,-1 \leq x \leq 2$.

FIGURE 5.22 The total area between $y=\sin x$ and the x-axis for $0 \leq x \leq 2 \pi$ is the sum of the absolute values of two integrals (Example 7).

FIGURE 5.23 The region between the curve $y=x^{3}-x^{2}-2 x$ and the x-axis (Example 8).

Evaluating Integrals
Evaluate the integrals in Exercises 1-34.

1. $\int_{0}^{2} x(x-3) d x$
2. $\int_{-1}^{1}\left(x^{2}-2 x+3\right) d x$
3. $\int_{-2}^{2} \frac{3}{(x+3)^{4}} d x$
4. $\int_{-1}^{1} x^{29} d x$
5. $\int_{1}^{4}\left(3 x^{2}-\frac{x^{3}}{4}\right) d x$
6. $\int_{-2}^{3}\left(x^{3}-2 x+3\right) d x$
7. $\int_{0}^{1}\left(x^{2}+\sqrt{x}\right) d x$
8. $\int_{1}^{32} x^{-6 / 5} d x$
9. $\int_{0}^{\pi / 3} 2 \sec ^{2} x d x$
10. $\int_{0}^{\pi}(1+\cos x) d x$
11. $\int_{\pi / 4}^{3 \pi / 4} \csc \theta \cot \theta d \theta$
12. $\int_{0}^{\pi / 3} 4 \frac{\sin u}{\cos ^{2} u} d u$
13. $\int_{\pi / 2}^{0} \frac{1+\cos 2 t}{2} d t$
14. $\int_{-\pi / 3}^{\pi / 3} \sin ^{2} t d t$
15. $\int_{0}^{\pi / 4} \tan ^{2} x d x$
16. $\int_{\rho_{0}}^{\pi / 6}(\sec x+\tan x)^{2} d x$
17. $\int_{0}^{\pi / 8} \sin 2 x d x$
18. $\int_{-\pi / 3}^{-\pi / 4}\left(4 \sec ^{2} t+\frac{\pi}{t^{2}}\right) d t$
19. $\int_{1}^{-1}(r+1)^{2} d r$
20. $\int_{-\sqrt{3}}^{\sqrt{3}}(t+1)\left(t^{2}+4\right) d t$
21. $\int_{\sqrt{2}}^{1}\left(\frac{u^{7}}{2}-\frac{1}{u^{5}}\right) d u$
22. $\int_{-3}^{-1} \frac{y^{5}-2 y}{y^{3}} d y$
23. $\int_{1}^{\sqrt{2}} \frac{s^{2}+\sqrt{s}}{s^{2}} d s$
24. $\int_{1}^{8} \frac{\left(x^{1 / 3}+1\right)\left(2-x^{2 / 3}\right)}{x^{1 / 3}} d x$
25. $\int_{\pi / 2}^{\pi} \frac{\sin 2 x}{2 \sin x} d x$
26. $\int_{0}^{\pi / 3}(\cos x+\sec x)^{2} d x$
27. $\int_{-4}^{4}|x| d x$
28. $\int_{0}^{\pi} \frac{1}{2}(\cos x+|\cos x|) d x$
29. $\int_{0}^{\ln 2} e^{3 x} d x$
30. $\int_{1}^{2}\left(\frac{1}{x}-e^{-x}\right) d x$
31. $\int_{0}^{1 / 2} \frac{4}{\sqrt{1-x^{2}}} d x$
32. $\int_{0}^{1 / \sqrt{3}} \frac{d x}{1+4 x^{2}}$
33. $\int_{2}^{4} x^{n-1} d x$
34. $\int_{-1}^{0} \pi^{x-1} d x$

Area
In Exercises 57-60, find the total area between the region and the x-axis.
57. $y=-x^{2}-2 x,-3 \leq x \leq 2$
58. $y=3 x^{2}-3,-2 \leq x \leq 2$
59. $y=x^{3}-3 x^{2}+2 x, \quad 0 \leq x \leq 2$
60. $y=x^{1 / 3}-x,-1 \leq x \leq 8$

Find the areas of the shaded regions in Exercises 61-64.
61.

62.

In Exercises 35-38, guess an antiderivative for the integrand function. Validate your guess by differentiation and then evaluate the given definite integral. (Hint: Keep the Chain Rule in mind when trying to guess an antiderivative. You will learn how to find such antiderivatives in the next section.)
35. $\int_{0}^{1} x e^{2^{2}} d x$
36. $\int_{1}^{2} \frac{\ln x}{x} d x$
37. $\int_{2}^{5} \frac{x d x}{\sqrt{1+x^{2}}}$
38. $\int_{0}^{\pi / 3} \sin ^{2} x \cos x d x$

Derivatives of Integrals

Find the derivatives in Exercises 39-44.
a. by evaluating the integral and differentiating the result.
b. by differentiating the integral directly.
39. $\frac{d}{d x} \int_{0}^{\sqrt{x}} \cos t d t$
40. $\frac{d}{d x} \int_{1}^{\operatorname{tin} x} 3 t^{2} d t$
41. $\frac{d}{d t} \int_{0}^{t} \sqrt{u} d u$
42. $\frac{d}{d \theta} \int_{0}^{\tan \theta} \sec ^{2} y d y$
43. $\frac{d}{d x} \int_{0}^{x^{3}} e^{-t} d t$
44. $\frac{d}{d t} \int_{0}^{\sqrt{i}}\left(x^{4}+\frac{3}{\sqrt{1-x^{2}}}\right) d x$

Find $d y / d x$ in Exercises 45-56.
45. $y=\int_{0}^{x} \sqrt{1+t^{2}} d t$
46. $y=\int_{1}^{x} \frac{1}{t} d t, \quad x>0$
47. $y=\int_{\sqrt{x}}^{0} \sin \left(t^{2}\right) d t$
48. $y=x \int_{2}^{x^{2}} \sin \left(t^{3}\right) d t$
49. $y=\int_{-1}^{x} \frac{t^{2}}{t^{2}+4} d t-\int_{3}^{x} \frac{t^{2}}{t^{2}+4} d t$
50. $y=\left(\int_{0}^{x}\left(t^{3}+1\right)^{10} d t\right)^{3}$
51. $y=\int_{0}^{\sin x} \frac{d t}{\sqrt{1-t^{2}}}, \quad|x|<\frac{\pi}{2}$
52. $y=\int_{\tan x}^{0} \frac{d t}{1+t^{2}}$
53. $y=\int_{0}^{t^{2}} \frac{1}{\sqrt{t}} d t$
54. $y=\int_{2}^{1} \sqrt[3]{t} d t$
55. $y=\int_{0}^{\sin ^{-1} x} \cos t d t$
56. $y=\int_{-1}^{s^{v / v}} \sin ^{-1} t d t$

For which of the functions Functions we can integrate:
below can we currently find an antiderivative?

$$
\begin{aligned}
& f(x)=\sec x \\
& g(x)=\csc (3 x) \cot (3 x) \\
& h(x)=x \sin x \\
& k(x)=x \cos \left(x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x^{n}, \sin (a x), \cos (a x) \\
& \csc (a x) \cot (a x) \\
& \sec (a x) \tan (a x) \\
& \sec ^{2}(a x), \csc ^{2}(a x) \\
& e^{\alpha x}, b^{a x} \\
& \frac{1}{1+(a x)^{2}}, \frac{1}{\sqrt{1-(a x)^{2}}}
\end{aligned}
$$

THEOREM 6-The Substitution Rule
If $u=g(x)$ is a differentiable function whose range is an interval l, and f is continuous on I, then

$$
\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u
$$

$$
\int x^{2} e^{x^{3}} d x=
$$

Hint: multiply by $e^{\wedge} x$ on top and bottom
(a) $\int \frac{d x}{e^{x}+e^{-x}}=$

Hint: multiply by $\sec (x)+\tan (x)$ on top and bottom
(b) $\int \sec x d x=$

$$
\begin{aligned}
& \text { Integrals of the tangent, cotangent, secant, and cosecant functions } \\
& \int \tan x d x=\ln |\sec x|+C \quad \int \sec x d x=\ln |\sec x+\tan x|+C \\
& \int \cot x d x=\ln |\sin x|+C
\end{aligned} \quad \int \csc x d x=-\ln |\csc x+\cot x|+C .
$$

$\int \frac{2 z d z}{\sqrt[3]{z^{2}+1}}$.
Method 1: Substitute $u=z^{2}+1$.
Method 2: Substitute $u=\sqrt[3]{z^{2}+1}$ instead.
(a) $\int \frac{\cos (\sqrt{t})}{\sqrt{t} \sin ^{2}(\sqrt{t})} d t$
(b) $\int_{2}^{e} \frac{1}{x(\ln x)^{3}} d x$
(c) $\int w \sqrt{1+w} d w$

EXERCISES 5.5

Evaluating Indefinite Integrals
Evaluate the indefinite integrals in Exercises 1-16 by using the given substitutions to reduce the integrals to standard form.

1. $\int 2(2 x+4)^{5} d x, \quad u=2 x+4$
2. $\int 7 \sqrt{7 x-1} d x, \quad u=7 x-1$
3. $\int 2 x\left(x^{2}+5\right)^{-4} d x, \quad u=x^{2}+5$
4. $\int \frac{4 x^{3}}{\left(x^{4}+1\right)^{2}} d x, \quad u=x^{4}+1$
5. $\int(3 x+2)\left(3 x^{2}+4 x\right)^{4} d x, \quad u=3 x^{2}+4 x$
6. $\int \frac{(1+\sqrt{x})^{1 / 3}}{\sqrt{x}} d x, \quad u=1+\sqrt{x}$
7. $\int \sin 3 x d x, \quad u=3 x$
8. $\int x \sin \left(2 x^{2}\right) d x, \quad u=2 x^{2}$
9. $\int \sec 2 t \tan 2 t d t, \quad u=2 t$
10. $\int\left(1-\cos \frac{t}{2}\right)^{2} \sin \frac{t}{2} d t, \quad u=1-\cos \frac{t}{2}$
11. $\int \frac{9 r^{2} d r}{\sqrt{1-r^{3}}}, \quad u=1-r^{3}$
12. $\int 12\left(y^{4}+4 y^{2}+1\right)^{2}\left(y^{3}+2 y\right) d y, \quad u=y^{4}+4 y^{2}+1$
13. $\int \sqrt{x} \sin ^{2}\left(x^{3 / 2}-1\right) d x, \quad u=x^{3 / 2}-1$
14. $\int \frac{1}{x^{2}} \cos ^{2}\left(\frac{1}{x}\right) d x, \quad u=-\frac{1}{x}$
15. $\int \csc ^{2} 2 \theta \cot 2 \theta d \theta$
a. Using $u=\cot 2 \theta$
b. Using $u=\csc 2 \theta$
16. $\int \frac{d x}{\sqrt{5 x+8}}$
a. Using $u=5 x+8$
b. Using $u=\sqrt{5 x+8}$

Evaluate the integrals in Exercises 17-66.
17. $\int \sqrt{3-2 s} d s$
18. $\int \frac{1}{\sqrt{5 s+4}} d s$
19. $\int \theta \sqrt[4]{1-\theta^{2}} d \theta$
20. $\int 3 y \sqrt{7-3 y^{2}} d y$
21. $\int \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} d x$
22. $\int \sqrt{\sin x} \cos ^{3} x d x$
23. $\int \sec ^{2}(3 x+2) d x$
24. $\int \tan ^{2} x \sec ^{2} x d x$
25. $\int \sin ^{5} \frac{x}{3} \cos \frac{x}{3} d x$
26. $\int \tan ^{7} \frac{x}{2} \sec ^{2} \frac{x}{2} d x$
27. $\int r^{2}\left(\frac{r^{3}}{18}-1\right)^{5} d r$
28. $\int r^{4}\left(7-\frac{r^{5}}{10}\right)^{3} d r$
29. $\int x^{1 / 2} \sin \left(x^{3 / 2}+1\right) d x$
30. $\int \csc \left(\frac{v-\pi}{2}\right) \cot \left(\frac{v-\pi}{2}\right) d v$
31. $\int \frac{\sin (2 t+1)}{\cos ^{2}(2 t+1)} d t$
32. $\int \frac{\sec z \tan z}{\sqrt{\sec z}} d z$
33. $\int \frac{1}{t^{2}} \cos \left(\frac{1}{t}-1\right) d t$
34. $\int \frac{1}{\sqrt{t}} \cos (\sqrt{t}+3) d t$
35. $\int \frac{1}{\theta^{2}} \sin \frac{1}{\theta} \cos \frac{1}{\theta} d \theta$
36. $\int \frac{\cos \sqrt{\theta}}{\sqrt{\theta} \sin ^{2} \sqrt{\theta}} d \theta$
37. $\int \frac{x}{\sqrt{1+x}} d x$
38. $\int \sqrt{\frac{x-1}{x^{5}}} d x$
39. $\int \frac{1}{x^{2}} \sqrt{2-\frac{1}{x}} d x$
40. $\int \frac{1}{x^{3}} \sqrt{\frac{x^{2}-1}{x^{2}}} d x$
41. $\int \sqrt{\frac{x^{3}-3}{x^{11}}} d x$
42. $\int \sqrt{\frac{x^{4}}{x^{3}-1}} d x$
43. $\int x(x-1)^{10} d x$
44. $\int x \sqrt{4-x} d x$
45. $\int(x+1)^{2}(1-x)^{5} d x$
46. $\int(x+5)(x-5)^{1 / 3} d x$
47. $\int x^{3} \sqrt{x^{2}+1} d x$
48. $\int 3 x^{5} \sqrt{x^{3}+1} d x$
49. $\int \frac{x}{\left(x^{2}-4\right)^{3}} d x$
50. $\int \frac{x}{(2 x-1)^{2 / 3}} d x$
51. $\int(\cos x) e^{\sin x} d x$
52. $\int(\sin 2 \theta) e^{\sin ^{2} \theta} d \theta$
53. $\int \frac{1}{\sqrt{x e^{-\sqrt{x}}}} \sec ^{2}\left(e^{\sqrt{x}}+1\right) d x$
54. $\int \frac{1}{x^{2}} e^{1 / x} \sec \left(1+e^{1 / x}\right) \tan \left(1+e^{1 / x}\right) d x$
55. $\int \frac{d x}{x \ln x}$
56. $\int \frac{\ln \sqrt{t}}{t} d t$
57. $\int \frac{d z}{1+e^{z}}$
58. $\int \frac{d x}{x \sqrt{x^{4}-1}}$
59. $\int \frac{5}{9+4 r^{2}} d r$
60. $\int \frac{1}{\sqrt{e^{2 \theta}-1}} d \theta$

3	May 29 NO CLASS Memorial Day	May 30	May 31	Sun 1	Section 5.6: Area		
Between Curves						\quad	WS 5.5-5.6 cont.
:---							
WS 5.6							
Quiz \#2 (5.4-5.5)	\quad	Section 8.2: Integration by					
:---							
Parts							

Evaluate $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$

Method 2: Transform the integral as an indefinite imegral, integrate, change bock to x, and use the original x-limits.

$$
\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x=
$$

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7 . formed limits given in Theorem 7 .

$$
\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x=
$$

(a) $\int_{\pi / 4}^{\pi / 2} \cot \theta \csc ^{2} \theta d \theta=$
\square
(b) $\quad \int_{-\pi / 4}^{\pi / 4} \tan x d x=$
$u=$
$d u=$

Check your understading
Example 2: Evaluate the integral.
$\int(\sin 6 x) e^{\cos 6 x} d x$
(A) $\frac{1}{6} e^{\cos 6 x}+C$
(B) $-\frac{1}{6} e^{\cos 6 x}+C$
(C) $\frac{1}{6}(\cos 6 x) e^{\cos 6 x}+C$
(D) $\frac{1}{2}\left(e^{\cos x}\right)^{2}+C$

Areas Between Curves

DEFINITION If f and g are continuous with $f(x) \geq g(x)$ throughout $[a, b]$. then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to b is the integral of $(f-g)$ from a to b :

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

EXAMPLE 4 Find the area of the region bounded above by the curve $y=2 e^{-x}+x$, below by the curve $y=e^{x} / 2$, on the left by $x=0$, and on the right by $x=1$.

$$
\begin{aligned}
\text { Area } & =\text { TOP -BOT } \\
& =\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \quad(\text { if } f \geq g)
\end{aligned}
$$

EXAMPLE 5 Find the area of the region enclosed by the parabola $y=2-x^{2}$ and the line $y=-x$.

$$
\begin{aligned}
& \text { test each } \\
& \text { interval }
\end{aligned}
$$

But how to tell with ?

FIGURE 5.28 The region in Example 4 with a typical approximating rectangle.

FIGURE 5.29 The region in Example 5 with a typical approximating rectangle from a Riemann sum.

Evaluating Definite Integrals
Use the Substitution Formula in Theorem 7 to evaluate the integrals in Exercises 1-48.

1. a. $\int_{0}^{3} \sqrt{y+1} d y$
b. $\int_{-1}^{0} \sqrt{y+1} d y$
2. a. $\int_{0}^{1} r \sqrt{1-r^{2}} d r$
b. $\int_{-1}^{1} r \sqrt{1-r^{2}} d r$
3. a. $\int_{0}^{\pi / 4} \tan x \sec ^{2} x d x$
b. $\int_{-\pi / 4}^{0} \tan x \sec ^{2} x d x$
4. a. $\int_{0}^{\pi} 3 \cos ^{2} x \sin x d x$
b. $\int_{2 \pi}^{3 \pi} 3 \cos ^{2} x \sin x d x$
5. a. $\int_{0}^{1} t^{3}\left(1+t^{4}\right)^{3} d t$
b. $\int_{-1}^{1} t^{3}\left(1+t^{4}\right)^{3} d t$
6. a. $\int_{0}^{\sqrt{7}} t\left(t^{2}+1\right)^{1 / 3} d t$
b. $\int_{-\sqrt{7}}^{0} t\left(t^{2}+1\right)^{1 / 3} d t$
7. a. $\int_{-1}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r$
b. $\int_{0}^{1} \frac{5 r}{\left(4+r^{2}\right)^{2}} d r$
8. a. $\int_{0}^{1} \frac{10 \sqrt{v}}{\left(1+v^{3 / 2}\right)^{2}} d v$
b. $\int_{1}^{4} \frac{10 \sqrt{v}}{\left(1+v^{3 / 2}\right)^{2}} d v$
9. a. $\int_{0}^{\sqrt{3}} \frac{4 x}{\sqrt{x^{2}+1}} d x$
b. $\int_{-\sqrt{3}}^{\sqrt{3}} \frac{4 x}{\sqrt{x^{2}+1}} d x$
10. a. $\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} d x$
b. $\int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4}+9}} d x$
11. a. $\int_{0}^{1} t \sqrt{4+5 t} d t$
b. $\int_{1}^{9} t \sqrt{4+5 t} d t$
12. a. $\int_{0}^{\pi / 6}(1-\cos 3 t) \sin 3 t d t$
b. $\int_{\pi / 6}^{\pi / 3}(1-\cos 3 t) \sin 3 t d t$
13. a. $\int_{0}^{2 \pi} \frac{\cos z}{\sqrt{4+3 \sin z}} d z$
b. $\int_{-\pi}^{\pi} \frac{\cos z}{\sqrt{4+3 \sin z}} d z$
14. a. $\int_{-\pi / 2}^{0}\left(2+\tan \frac{t}{2}\right) \sec ^{2} \frac{t}{2} d t$
b. $\int_{-\pi / 2}^{\pi / 2}\left(2+\tan \frac{t}{2}\right) \sec ^{2} \frac{t}{2} d t$
15. $\int_{0}^{1} \sqrt{t^{5}+2 t}\left(5 t^{4}+2\right) d t$
16. $\int_{1}^{4} \frac{d y}{2 \sqrt{y}(1+\sqrt{y})^{2}}$
17. $\int_{0}^{\pi / 6} \cos ^{-3} 2 \theta \sin 2 \theta d \theta$
18. $\int_{\pi}^{3 \pi / 2} \cot ^{5}\left(\frac{\theta}{6}\right) \sec ^{2}\left(\frac{\theta}{6}\right) d \theta$
19. $\int_{0}^{\pi} 5(5-4 \cos t)^{1 / 4} \sin t d t$
20. $\int_{0}^{\pi / 4}(1-\sin 2 t)^{3 / 2} \cos 2 t d t$
21. $\int_{0}^{1}\left(4 y-y^{2}+4 y^{3}+1\right)^{-2 / 3}\left(12 y^{2}-2 y+4\right) d y$
22. $\int_{0}^{1}\left(y^{3}+6 y^{2}-12 y+9\right)^{-1 / 2}\left(y^{2}+4 y-4\right) d y$
23. $\int_{0}^{\sqrt[3]{\pi^{2}}} \sqrt{\theta} \cos ^{2}\left(\theta^{3 / 2}\right) d \theta$
24. $\int_{-1}^{-1 / 2} t^{-2} \sin ^{2}\left(1+\frac{1}{t}\right) d t$
25. $\int_{0}^{\pi / 4}\left(1+e^{\sin \theta}\right) \sec ^{2} \theta d \theta$
26. $\int_{\pi / 4}^{\pi / 2}\left(1+e^{\cot \theta}\right) \csc ^{2} \theta d \theta$
27. $\int_{0}^{\pi} \frac{\sin t}{2-\cos t} d t$
28. $\int_{0}^{\pi / 3} \frac{4 \sin \theta}{1-4 \cos \theta} d \theta$
29. $\int_{1}^{2} \frac{2 \ln x}{x} d x$
30. $\int_{2}^{4} \frac{d x}{x \ln x}$
31. $\int_{2}^{4} \frac{d x}{x(\ln x)^{2}}$
32. $\int_{2}^{16} \frac{d x}{2 x \sqrt{\ln x}}$
33. $\int_{0}^{\pi / 2} \tan \frac{x}{2} d x$
34. $\int_{\pi / 4}^{\pi / 2} \cot t d t$
35. $\int_{0}^{\pi / 3} \tan ^{2} \theta \cos \theta d \theta$
36. $\int_{0}^{\pi / 12} 6 \tan 3 x d x$
37. $\int_{-\pi / 2}^{\pi / 2} \frac{2 \cos \theta d \theta}{1+(\sin \theta)^{2}}$
38. $\int_{\pi / 6}^{\pi / 4} \frac{\csc ^{2} x d x}{1+(\cot x)^{2}}$
39. $\int_{0}^{\ln \sqrt{3}} \frac{e^{x} d x}{1+e^{2 x}}$
40. $\int_{1}^{e^{* / t}} \frac{4 d t}{t\left(1+\ln ^{2} t\right)}$
41. $\int_{0}^{1} \frac{4 d s}{\sqrt{4-s^{2}}}$
42. $\int_{0}^{\sqrt[3]{2} / 4} \frac{d s}{\sqrt{9-4 s^{2}}}$
43. $\int_{\sqrt{2}}^{2} \frac{\sec ^{2}\left(\sec ^{-1} x\right) d x}{x \sqrt{x^{2}-1}}$
44. $\int_{2 / \sqrt{3}}^{2} \frac{\cos \left(\sec ^{-1} x\right) d x}{x \sqrt{x^{2}-1}}$
45. $\int_{-1}^{-\sqrt{2} / 2} \frac{d y}{y \sqrt{4 y^{2}-1}}$
46. $\int_{0}^{3} \frac{y d y}{\sqrt{5 y+1}}$
47. $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$
48. $\int_{-\sqrt{3}}^{1 / \sqrt{3}} \frac{\cos \left(\tan ^{-1} 3 x\right)}{1+9 x^{2}} d x$

Area
Find the total areas of the shaded regions in Exercises 49-64.
49.

50.

51.

53.

54.

Find the areas of the regions enclosed by the lines and curves in Exercises 65-74.
65. $y=x^{2}-2$ and $y=2$ 66. $y=2 x-x^{2}$ and $y=-3$
67. $y=x^{4}$ and $y=8 x \quad$ 68. $y=x^{2}-2 x$ and $y=x$
69. $y=x^{2}$ and $y=-x^{2}+4 x$
70. $y=7-2 x^{2}$ and $y=x^{2}+4$
71. $y=x^{4}-4 x^{2}+4$ and $y=x^{2}$
72. $y=x \sqrt{a^{2}-x^{2}}, \quad a>0, \quad$ and $y=0$
73. $y=\sqrt{|x|}$ and $5 y=x+6$ (How many intersection points are there?)
74. $y=\left|x^{2}-4\right|$ and $y=\left(x^{2} / 2\right)+4$

Math 1552

Section 8.2:

Integration by Parts

3	May 29 NO CLASS Memorial Day	$\begin{array}{\|l\|} \hline \text { May } 30 \\ \text { WS } 5.4 \\ \text { WS 5.5-5.6 } \end{array}$	$\begin{aligned} & \text { May 31 } \\ & \text { Section 5.6: Area } \\ & \text { Between Curves } \end{aligned}$	Jun I WS 5.5-5.6 cont. WS 5.6 Quiz H2 (5.4-5.6)	Jun 2 Section 8.2; Integration by Parts
4	Jun 5 Section 8.3: Powers of Trig Functions	Jun 6 WS 8.2 WS 8.3	Jun 7 Review for Test 1	Jun 8 Test $\# 1$ ($4.8,5.1-5.6$, $8.2-8.3)$	Jun 9 Section 8.4: Trigonometric Substitution

Integration by parts is a technique for simplifying integrals of the form

$$
\int u(x) v^{\prime}(x) d x
$$

Integration by Parts Formula

$$
\begin{equation*}
\int u(x) \underbrace{v^{\prime}(x) d x}_{d v}=u(x) v(x)-\int v(x) \underbrace{u^{\prime}(x) d x}_{d u} \tag{1}
\end{equation*}
$$

Integration by Parts Formula-Differential Version

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{2}
\end{equation*}
$$

$\int x \cos x d x$

Order in which to choose u

Choose u according to the ILATE rule:
I - Inverse Functions
L - Logarithmic Functions
A - Algebraic Expressions (polynomials, rational functions, etc.)
T-Trigonometric Functions
E - Exponential Functions

Integration by Parts Formula for Definite Integrals

$$
\begin{equation*}
\left.\int_{a}^{b} u(x) v^{\prime}(x) d x=u(x) v(x)\right]_{a}^{b}-\int_{a}^{b} v(x) u^{\prime}(x) d x \tag{3}
\end{equation*}
$$

$$
\int_{0}^{4} x e^{-x} d x .
$$

$\int x \sin (x) \cos (x) d x$.
$\int \sin [\ln (x)] d x$.

The difficult ones

$$
\int u d v=u v-\int v d u
$$

$$
\int x^{2} e^{x} d x
$$

$$
\int e^{x} \cos x d x
$$

Integration by Parts

Evaluate the integrals in Exercises $1-24$ using integration by parts.

1. $\int x \sin \frac{x}{2} d x$
2. $\int \theta \cos \pi \theta d \theta$
3. $\int t^{2} \cos t d t$
4. $\int x^{2} \sin x d x$
5. $\int_{1}^{2} x \ln x d x$
6. $\int_{1}^{e} x^{3} \ln x d x$
7. $\int x e^{x} d x$
8. $\int x e^{3 x} d x$
9. $\int \tan ^{-1} y d y$
10. $\int \sin ^{-1} y d y$
11. $\int x \sec ^{2} x d x$
12. $\int 4 x \sec ^{2} 2 x d x$
13. $\int x^{3} e^{x} d x$
14. $\int p^{4} e^{-p} d p$
15. $\int\left(x^{2}-5 x\right) e^{x} d x$
16. $\int\left(r^{2}+r+1\right) e^{r} d r$
17. $\int x^{2} e^{-x} d x$
18. $\int\left(x^{2}-2 x+1\right) e^{2 x} d x$
19. $\int x^{5} e^{x} d x \quad$ 20. $\int t^{2} e^{4 t} d t$
20. $\int e^{\theta} \sin \theta d \theta$
21. $\int e^{-y} \cos y d y$
22. $\int e^{2 x} \cos 3 x d x$
23. $\int e^{-2 x} \sin 2 x d x$

Using Substitution
Evaluate the integrals in Exercises 25-30 by using a substitution prior to integration by parts.
25. $\int e^{\sqrt{3 s+9}} d s$
26. $\int_{0}^{1} x \sqrt{1-x} d x$
27. $\int_{0}^{\pi / 3} x \tan ^{2} x d x$
28. $\int \ln \left(x+x^{2}\right) d x$
29. $\int \sin (\ln x) d x$
30. $\int z(\ln z)^{2} d z$

Evaluating Integrals

Evaluate the integrals in Exercises 31-56. Some integrals do not require integration by parts.
31. $\int x \sec x^{2} d x$
32. $\int \frac{\cos \sqrt{x}}{\sqrt{\mathrm{x}}} d x$
33. $\int x(\ln x)^{2} d x$
34. $\int \frac{1}{x(\ln x)^{2}} d x$
35. $\int \frac{\ln x}{x^{2}} d x$
36. $\int \frac{(\ln x)^{3}}{x} d x$
37. $\int x^{3} e^{x^{4}} d x$
38. $\int x^{5} e^{x^{3}} d x$
39. $\int x^{3} \sqrt{x^{2}+1} d x$
40. $\int x^{2} \sin x^{3} d x$
41. $\int \sin 3 x \cos 2 x d x$
42. $\int \sin 2 x \cos 4 x d x$
43. $\int \sqrt{x} \ln x d x$
44. $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
45. $\int \cos \sqrt{x} d x$
46. $\int \sqrt{x} e^{\sqrt{x}} d x$
47. $\int_{0}^{\pi / 2} \theta^{2} \sin 2 \theta d \theta$
48. $\int_{0}^{\pi / 2} x^{3} \cos 2 x d x$
49. $\int_{2 / \sqrt{3}}^{2} t \sec ^{-1} t d t$
50. $\int_{0}^{1 / \sqrt{2}} 2 x \sin ^{-1}\left(x^{2}\right) d x$
51. $\int x \tan ^{-1} x d x$
52. $\int x^{2} \tan ^{-1} \frac{x}{2} d x$

Order in which to choose u

Choose u according to the ILATE rule:
I - Inverse Functions
L - Logarithmic Functions
A - Algebraic Expressions (polynomials, rational functions, etc.)
T - Trigonometric Functions
E-Exponential Functions

Math 1552

Section 8.3:

Powers and Products of
Trigonometric Functions

Week	Mon	Twes	Wed	Thurs	Fri
1	May 15 Introdactive to Math 1552 Section 48: Anti- derivatives	May 16 Calcadus review WS 4.8	May 17 Sections 5.1-5.2: Area under the curve	$\begin{aligned} & \text { May is } \\ & \text { WS } 5.1 \\ & \text { WS } 5.2 .5 .3 \end{aligned}$	May 19 Section 5.3: The Definite Integral
2	May 22 Section 53: The Definite Integral cont. Section 5.4: The Fundamental Theorem of Calculus	$\begin{array}{\|l} \hline \text { May 23 } \\ \text { WS } 5.2-5.3 \text { coed } \\ \text { WS } 5.3 \end{array}$	May 24 Section 5,4: The Fundamental Theoecm of Calculus cont. Willomer mively and whlubur gutr due!	May 25 WS 53 coniL Quir ${ }^{11}$ (48, 5.1-5.3)	$\text { May } 26$ Section 5.5: Integration by Substitution
3	May 29 NO CLASS Memprial Day	$\begin{array}{\|l\|} \hline \text { May } 30 \\ \text { Ws } 5.4 \\ \text { Ws 5.5-5.6 } \end{array}$	$\begin{aligned} & \text { May 31 } \\ & \text { Section 5.6: Area } \\ & \text { Between Curves } \end{aligned}$	Jun 1 WS $\$ 5.5 .6 \mathrm{cont}$. WS 5.6 Qaiz 122 (5.4-5.6)	Jun 2 Sective 8.2: Integration by Parts
4	Jane 5 Section 8.3: Powers of Trig Functions	Jun 6 WS 8.2 WS 8.3	Jun 7 Review for Test I	Jun 8 Test ${ }^{11}$ (4.8, 5.1-5.6, 8.2-8.3)	Jun 9 Section 8.4: Trigooometric Substitution

Review Question: Which integrals can we evaluate by parts?
(A) $\int \frac{x^{2}}{1+x^{3}} d x$
(B) $\int \frac{1}{x} e^{\ln x} d x$
(C) $\int x^{5} e^{x^{3}} d x$
(D) $\int x \tan ^{-1}(x) d x$

$$
\begin{align*}
& \text { Case } 1 \text { If } m \text { is odd, we write } m \text { as } 2 k+1 \text { and use the identity } \sin ^{2} x= \\
& 1-\cos ^{2} x \text { to obtain } \\
& \sin ^{-1} x=\sin ^{3+1} x=\left(\sin ^{2} x\right)^{4} \sin x=\left(1-\cos ^{2} x\right)^{4} \sin x . \tag{1}\\
& \text { Then we combine the single sin } x \text { with } d x \text { in the integral and set } \sin x d x \text { equal to } \\
& \text { - dif } \cos x \text {). } \\
& \text { Case } 2 \text { If } n \text { is odd in } \int \sin ^{-1} x \cos ^{-1} x d x \text {, we write } n \text { as } 2 k+1 \text { and use the } \\
& \text { identity } \cos ^{2} x=1-\sin ^{2} x \text { to obtrain } \\
& \cos ^{-x}=\cos ^{2 x+1} x=\left(\cos ^{2} x\right)^{4} \cos x=\left(1-\sin ^{2} x\right)^{2} \cos x \\
& \text { We then combine the single } \cos x \text { with } d x \text { and set } \cos x d x \text { equal to } d(\sin x) \text {. } \\
& \text { Case } 3 \text { If both } m \text { and } n \text { are even in } \int \sin ^{-} x \operatorname{ces}^{-1} x d r \text {, we substitute }
\end{align*}
$$

(*) $\sin ^{2} x+\cos ^{2} x=1$
(*) $1+\tan ^{2} x=\sec ^{2} x$
(*) $\sin ^{2} x=\frac{1}{2}[1-\cos (2 x)]$
(*) $\cos ^{2} x=\frac{1}{2}[1+\cos (2 x)]$
${ }^{(*)} \sin (2 x)=2 \sin x \cos x$
$\sin x \cos y=\frac{1}{2}[\sin (x-y)+\sin (x+y)]$
$\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]$
$\cos x \cos y=\frac{1}{2}[\cos (x-y)+\cos (x+y)]$

$$
\begin{aligned}
& \text { (*) }^{*} \sin ^{2} x+\cos ^{2} x=1 \\
& \text { (*) }^{*}+\tan ^{2} x=\sec ^{2} x \\
& \text { (*) }^{*} \sin ^{2} x=\frac{1}{2}[1-\cos (2 x)] \\
& \text { (*) }^{*} \cos ^{2} x=\frac{1}{2}[1+\cos (2 x)] \\
& \text { (*) }^{*} \sin (2 x)=2 \sin x \cos x \\
& \sin x \cos y=\frac{1}{2}[\sin (x-y)+\sin (x+y)] \\
& \sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)] \\
& \cos x \cos y=\frac{1}{2}[\cos (x-y)+\cos (x+y)]
\end{aligned}
$$

$\int \tan ^{4} x d x$.
$\int \sec ^{3} x d x$.
$\int \tan ^{4} x \sec ^{4} x d x$.
$\int \cos ^{2}(x) \cot (x) d x$

$$
\int \sin ^{4}(x) d x
$$

Evaluate the integral.

$$
\begin{aligned}
& \int \sin ^{2}(x) \cos ^{3}(x) d x \\
& \text { (A) } \frac{1}{5} \sin ^{5}(x)+C \\
& \text { (B) } \frac{1}{3} \sin ^{3}(x)-\frac{1}{5} \sin ^{5}(x)+C \\
& \text { (C) } \frac{1}{12} \sin ^{3}(x) \cos ^{4}(x)+C \\
& \text { (D) }-\frac{1}{3} \cos ^{3}(x)+\frac{1}{5} \cos ^{5}(x)+C
\end{aligned}
$$

EXERCISES 8.3

Powers of Sines and Cosines

Evaluate the integrals in Exercises 1-22.

1. $\int \cos 2 x d x$
2. $\int_{0}^{\pi} 3 \sin \frac{x}{3} d x$
3. $\int \cos ^{3} x \sin x d x$
4. $\int \sin ^{4} 2 x \cos 2 x d x$
5. $\int \sin ^{3} x d x$
6. $\int \cos ^{3} 4 x d x$
7. $\int \sin ^{5} x d x$
8. $\int_{0}^{\pi} \sin ^{5} \frac{x}{2} d x$
9. $\int \cos ^{3} x d x$
10. $\int_{0}^{\pi / 6} 3 \cos ^{5} 3 x d x$
11. $\int \sin ^{3} x \cos ^{3} x d x$
12. $\int \cos ^{3} 2 x \sin ^{5} 2 x d x$
13. $\int \cos ^{2} x d x$
14. $\int_{0}^{\pi / 2} \sin ^{2} x d x$
15. $\int_{0}^{\pi / 2} \sin ^{7} y d y$
16. $\int 7 \cos ^{7} t d t$
17. $\int_{0}^{\pi} 8 \sin ^{4} x d x$
18. $\int 8 \cos ^{4} 2 \pi x d x$
19. $\int 16 \sin ^{2} x \cos ^{2} x d x$
20. $\int_{0}^{\pi} 8 \sin ^{4} y \cos ^{2} y d y$
21. $\int 8 \cos ^{3} 2 \theta \sin 2 \theta d \theta$
22. $\int_{0}^{\pi / 2} \sin ^{2} 2 \theta \cos ^{3} 2 \theta d \theta$

Integrating Square Roots
Evaluate the integrals in Exercises 23-32.
23. $\int_{0}^{2 \pi} \sqrt{\frac{1-\cos x}{2}} d x \quad$ 24. $\int_{0}^{\pi} \sqrt{1-\cos 2 x} d x$
25. $\int_{0}^{\pi} \sqrt{1-\sin ^{2} t} d t$
26. $\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} d \theta$
27. $\int_{\pi / 3}^{\pi / 2} \frac{\sin ^{2} x}{\sqrt{1-\cos x}} d x$
28. $\int_{0}^{\pi / 6} \sqrt{1+\sin x} d x$ (Hint: Multiply by $\sqrt{\frac{1-\sin x}{1-\sin x}}$.
29. $\int_{5 \pi / 6}^{\pi} \frac{\cos ^{4} x}{\sqrt{1-\sin x}} d x$
30. $\int_{\pi / 2}^{3 \pi / 4} \sqrt{1-\sin 2 x} d x$
31. $\int_{0}^{\pi / 2} \theta \sqrt{1-\cos 2 \theta} d \theta$
32. $\int_{-\pi}^{\pi}\left(1-\cos ^{2} t\right)^{3 / 2} d t$

Powers of Tangents and Secants
Evaluate the integrals in Exercises 33-50.
33. $\int \sec ^{2} x \tan x d x$
34. $\int \sec x \tan ^{2} x d x$
35. $\int \sec ^{3} x \tan x d x$
36. $\int \sec ^{3} x \tan ^{3} x d x$
37. $\int \sec ^{2} x \tan ^{2} x d x$
38. $\int \sec ^{4} x \tan ^{2} x d x$
39. $\int_{-\pi / 3}^{0} 2 \sec ^{3} x d x$
40. $\int e^{x} \sec ^{3} e^{x} d x$

