$$
\begin{aligned}
& \text { MATH } \\
& 1552 \\
& \text { Chaperer 8-10 }
\end{aligned}
$$

Math 1552

Section 8.4:

Trigonometric Substitution

4	Jun 5 Section 8.3: Powers of Trig Functions	Jun 6 WS 8.2 WS 8.3	$\text { Jun } 7$ Review foe Test 1	Jun 8 Test 81 (4.8, 5.1-5.6. 8.2-8.3)	$\operatorname{Jun} 9$ Section 8.4: Trigonometric Sutratitution
5	Jun 12 Sectice 8.5: Partial fractions Section 4.5: L'Hopital's	An 13 WS 8.4 WS 8.5	Jun 14 Section 88: Improper Integrals	Jun 15 WS 8.5, 4.5 Quiz ${ }^{13}$ (8.4-8.5)	Jun 16 Section 10.1: Sequences
6	Jun 19 NOCLASS Juneteenth	Jan 20 WS 8.8 WS 10.1	Jun 21 Section 10.2: Infinite Series	Jun 22 WS 10.1 cont. Quiz $144(4.5,8.8,10.1)$	Jun 23 Section 10.3: Integral Test
7	Jun 26 Section 10.4: Cemparison Tests	Ran 27 WS 10.2 WS 103 WS 103	Jun 28 Section 10.5: Ratio and Root Tests Review for Test 2	Jun 29 Test 12 (8.4-8.5, 4.5, 8.8, 10.1-10.3)	Jun 30 Section 10.5: cont. Section 10.6: Alhernating Series

$\int \sqrt{4-x^{2}} d x$
$\int \frac{1}{\left(9+x x^{2}\right)^{2}} d x$
$\int \frac{1}{x^{4} \sqrt{x^{2}-1}} d x$

Today's Learning Goals

- Identify which types of integrals can be solved with a trigonometric substitution
- Learn which substitution matches which general form
- Evaluate integrals using the method of trigonometric substitution

Trigonometric Substitutions
We use a trig substitution when no other integration method will work, and when the integral contains one of these terms:

$$
\begin{aligned}
& a^{2}-x^{2} \\
& x^{2}-a^{2} \\
& a^{2}+x^{2}
\end{aligned}
$$

Form 1:
When the integral contains a term of the form

$$
a^{2}-x^{2}
$$

use the substitution:

$$
x=a \sin \theta
$$

Form 2:

When the integral contains a term of the form

$$
a^{2}+x^{2}
$$

use the substitution:

$$
x=a \tan \theta
$$

Form 3:

When the integral contains a term of the form

$$
x^{2}-a^{2}
$$

use the substitution:

$$
x=a \sec \theta
$$

$$
a^{2}-x^{2}
$$

use the substitution:

$$
x=a \sin \theta
$$

$$
\int \frac{1}{\left(9+x^{2}\right)^{3 / 2}} d x
$$

$\int \frac{1}{x^{4} \sqrt{x^{2}-1}} d x$
Form 3:
When the integral contains a term of
the form

$$
x^{2}-a^{2}
$$

use the substitution:
$x=a \sec \theta$
$\int_{0}^{2} \frac{d x}{8+2 x^{2}}$

$$
\int_{0}^{1 / 2 \sqrt{2}} \frac{2 d x}{\sqrt{1-4 x^{2}}}
$$

$$
\int_{0}^{\ln 4} \frac{e^{t} d t}{\sqrt{e^{2 t}+9}}
$$

$$
\int \frac{x d x}{\sqrt{1+x^{4}}}
$$

Section 8.4: 5, 11, 13, 17, 19, 29, 35 (extra practice: 39)

EXERCISES 8.4

Using Trigonometric Substitutions
Evaluate the integrals in Exercises 1-14.

1. $\int \frac{d x}{\sqrt{9+x^{2}}}$ 2. $\int \frac{3 d x}{\sqrt{1+9 x^{2}}}$
2. $\int_{-2}^{2} \frac{d x}{4+x^{2}}$
3. $\int_{0}^{2} \frac{d x}{8+2 x^{2}}$
4. $\int_{0}^{3 / 2} \frac{d x}{\sqrt{9-x^{2}}}$
5. $\int_{0}^{1 / 2 \sqrt{2}} \frac{2 d x}{\sqrt{1-4 x^{2}}}$
6. $\int \sqrt{25-t^{2}} d t$
7. $\int \sqrt{1-9 t^{2}} d t$
8. $\int \frac{d x}{\sqrt{4 x^{2}-49}} \quad x>\frac{7}{2}$
9. $\int \frac{5 d x}{\sqrt{25 x^{2}-9}} \quad x>\frac{3}{5}$
10. $\int \frac{\sqrt{y^{2}-49}}{y} d y, y>7$
11. $\int \frac{\sqrt{y^{2}-25}}{y^{3}} d y, \quad y>5$
12. $\int \frac{d x}{x^{2} \sqrt{x^{2}-1}}, x>1$
13. $\int \frac{2 d x}{x^{3} \sqrt{x^{2}-1}}, x>1$

Assorted Integrations
Use any method to evaluate the integrals in Exercises 15-34. Most will require trigonometric substitutions, but some can be evaluated by other methods.
15. $\int \frac{x}{\sqrt{9-x^{2}}} d x$
16. $\int \frac{x^{2}}{4+x^{2}} d x$
17. $\int \frac{x^{3} d x}{\sqrt{x^{2}+4}}$
18. $\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}$
19. $\int \frac{8 d w}{w^{2} \sqrt{4-w^{2}}}$
20. $\int \frac{\sqrt{9-w^{2}}}{w^{2}} d w$
21. $\int \sqrt{\frac{x+1}{1-x}} d x$
22. $\int x \sqrt{x^{2}-4} d x$
23. $\int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}$
24. $\int_{0}^{1} \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}$
25. $\int \frac{d x}{\left(x^{2}-1\right)^{3 / 2}}, x>1$
26. $\int \frac{x^{2} d x}{\left(x^{2}-1\right)^{3 / 2}}, x>1$
27. $\int \frac{\left(1-x^{2}\right)^{3 / 2}}{x^{6}} d x$
28. $\int \frac{\left(1-x^{2}\right)^{1 / 2}}{x^{4}} d x$
29. $\int \frac{8 d x}{\left(4 x^{2}+1\right)^{2}}$
30. $\int \frac{6 d t}{\left(9 t^{2}+1\right)^{2}}$
31. $\int \frac{x^{3} d x}{x^{2}-1}$
32. $\int \frac{x d x}{25+4 x^{2}}$
33. $\int \frac{v^{2} d v}{\left(1-v^{2}\right)^{5 / 2}}$
34. $\int \frac{\left(1-r^{2}\right)^{5 / 2}}{r^{8}} d r$

In Exercises 35-48, use an appropriate substitution and then a trigonometric substitution to evaluate the integrals.
35. $\int_{0}^{\ln 4} \frac{d d t}{\sqrt{e^{2 t}+9}}$
36. $\int_{\ln (3 / 4)}^{\ln (4 / 3)} \frac{d d t}{\left(1+e^{2}\right)^{3 / 2}}$
37. $\int_{1 / 12}^{1 / 4} \frac{2 d t}{\sqrt{t}+4 t \sqrt{t}}$
38. $\int_{1}^{e} \frac{d y}{y \sqrt{1+(\ln y)^{2}}}$
39. $\int \frac{d x}{x \sqrt{x^{2}-1}}$
40. $\int \frac{d x}{1+x^{2}}$
41. $\int \frac{x d x}{\sqrt{x^{2}-1}}$
42. $\int \frac{d x}{\sqrt{1-x^{2}}}$
43. $\int \frac{x d x}{\sqrt{1+x^{4}}}$
44. $\int \frac{\sqrt{1-(\ln x)^{2}}}{x \ln x} d x$
45. $\int \sqrt{\frac{4-x}{x}} d x$
46. $\int \sqrt{\frac{x}{1-x^{3}}} d x$
(Hint: Let $x=u^{2}$.)

$$
\text { (Hint: Let } u=x^{3 / 2} \text {) }
$$

47. $\int \sqrt{x} \sqrt{1-x} d x$
48. $\int \frac{\sqrt{x-2}}{\sqrt{x-1}} d x$

Complete the Square Before Using Trigonometric Substitutions For Exercises 49-52, complete the square before using an appropriate trigonometric substitution.
49. $\int \sqrt{8-2 x-x^{2}} d x$
50. $\int \frac{1}{\sqrt{x^{2}-2 x+5}} d x$
51. $\int \frac{\sqrt{x^{2}+4 x+3}}{x+2} d x$
52. $\int \frac{\sqrt{x^{2}+2 x+2}}{x^{2}+2 x+1} d x$

Initial Value Problems
Solve the initial value problems in Exercises 53-56 for y as a function of x.
53. $x \frac{d y}{d x}=\sqrt{x^{2}-4}, \quad x \geq 2, \quad y(2)=0$
54. $\sqrt{x^{2}-9} \frac{d y}{d x}=1, x>3, y(5)=\ln 3$
55. $\left(x^{2}+4\right) \frac{d y}{d x}=3, \quad y(2)=0$
56. $\left(x^{2}+1\right)^{2} \frac{d y}{d x}=\sqrt{x^{2}+1}, y(0)=1$

Applications and Examples

57. Area Find the area of the region in the first quadrant that is enclosed by the coordinate axes and the curve $y=\sqrt{9-x^{2}} / 3$.
58. Area Find the area enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

8.5 Integration of Rational Functions by Partial Fractions
a rope 30 ft long. As the boat travels along the positive y-axis, the skier is pulled behind the boat along an unknown path $y=f(x)$, as shown in the accompanying figure.
a. Show that $f^{\prime}(x)=\frac{-\sqrt{900-x^{2}}}{x}$.
(Hint: Assume that the skier is always pointed directly at the boat and the rope is on a line tangent to the path $y=f(x)$.)
b. Solve the equation in part (a) for $f(x)$, using $f(30)=0$.

63. Find the average value of $f(x)=\frac{\sqrt{x+1}}{\sqrt{x}}$ on the interval [1,3].
64. Find the length of the curve $y=1-e^{-x}, 0 \leq x \leq 1$.

Math 1552

Section 8.5:
The Method of Partial Fractions

4	Jun 5 Section 8.3: Powers of Trig Funstions	Man 6 WS 8.2 WS 8.3	Jun 7 Review foe Test 1	Jun 8 Test 81 (4.8, 5.1-5.6. $8.2-8.3)$	$\text { Junn } 9$ Section 8.4: Trigonometric Sutstitution
5	Jun 12 Section 8.5: Partial fractions Section 4.5: L'Hopital's	Jun 13 WS 8.4 WS 8.5	Jun 14 Section 88: Improper Integrals	Jun 15 WS 8.5,4.5 Quiz 13 (8.4-8.5)	Jun 16 Section 10.1: Sequences
6	Jun 19 NO Cl_ASs Juneteenth	$\begin{aligned} & \text { Man } 20 \\ & \text { WS } 8.8 \\ & \text { WS } 10.1 \\ & \hline \end{aligned}$	Jun 21 Section 10.2: Infinite Series	Jun 22 WS 10.1 cent. Quiz 14 (4.5, 8.8, 10.1)	Jun 23 Section 10.3: Integral Test
7	Jun 26 Section 10.4: Cemparison Tests	Ran 27 WS 10.2 WS 10.3	Jun 28 Section 10.5: Ratio and Root Tests Review for Test 2	Jun 29 Test 82 (8.4-8.5, 4.5, 8.8, 10.1-10.3)	Jun 30 Section 10.5: cont. Section 10.6: Alsernating Series

$\int \frac{x^{3}+4 x^{2}}{2 x^{2}+8 x-10} d x$

Partial Fractions Procedure:

1. If the leading coefficient of the denominator is not a " 1 ", factor it out.
2. If the degree of the numerator is greater than that of the denominator, carry out long division first.
3. Factor the denominator completely into linear and/or irreducible quadratic terms.
4. For each linear term of the form $(x-a)^{k}$, you will have k partial fractions of the form:

$$
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\frac{A_{3}}{(x-a)^{3}}+\ldots+\frac{A_{k}}{(x-a)^{k}}
$$

(note: if $k=1$, there is only one fraction, etc.)
5. For each irreducible quadratic term of the form $\left(x^{2}+b x+c\right)^{-\prime}$, you will have m partial fractions of the form:
$\frac{A_{x} x+B_{1}}{x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(x^{2}+b x+c\right)^{2}}+\frac{A_{1} x+B_{2}}{\left(x^{2}+b x+c\right)^{b^{2}}}+\ldots+\frac{A_{2} x+B_{n}}{\left(x^{2}+b x+c\right)^{5}}$
(note: if $m=1$, there is only one fraction, etc.)
6. Solve for all the constants A_{i} and B_{i}. To solve:

- Multiply everything by the common denominator.
- Combine all like terms, then solve equations for all the A_{i} and B_{i} terms; OR plug in values to find equations for A_{i} and B_{i} terms.

7. Integrate using all the integration methods we have learned.

$$
1
$$

$$
\int_{\pi}^{2} \frac{\sin \vartheta}{\cos ^{2} \vartheta+\cos \vartheta-2} d \vartheta
$$

Math 1552

Section 4.5
L'Hopital's Rule

4	Jun 5 Section 8.3: Powers of Trig Functions	Jan 6 ws 8.2 WS 8.3	Jun 7 Review for Test I	$\begin{array}{\|l\|} \hline \text { Jun } 8 \\ \text { Test } 01 \text { (4.8, 5.1-5. } \\ 8.2 .8 .3) \\ \hline \end{array}$	Jun 9 Section 8.4: Trigonometric Substitution
5	Jun 12 Section 8.5: Partial fractions Section 4.5: L'Hopital's	Nan 13 WS 8.4 WS 8.5	Jun 14 Section 88: Improper Integrals	Jun 15 WS 8.5,4.5 Quiz 13 (8.4-8.5)	Jun 16 Section 10.1: Sequences
6	Jun 19 No Class Juncteenth	$\begin{array}{\|l\|} \hline \text { han } 20 \\ \text { ws } 8.8 \\ \text { ws } 10.1 \\ \hline \end{array}$	Jun 21 Section 10.2: Infinite Series	Jun 22 WS 10.1 cont. Quizin (4.5, 8.8, 10.1)	Jun 23 Section 10.3: Integral Test
7	Jun 26 Section 10.4: Comparison Tets	Jun 27 WS 10.2 WS 103	Jun 28 Section 10.5: Ratio and Root Tests Review for Test 2	Jun 29 Test 82 (8.4-8.5, 45, 8.8, 10.1-10.3)	Jun 30 Section 10.5: cont. Section 10.6: Alerrating Series

Today's Learning Goals

- Understand which forms are indeterminate
- Apply L'Hopital's Rule to evaluate limits
- Rewrite limits in forms appropriate to applying L'Hopital's Rule

Indeterminate Forms

$$
\begin{aligned}
& \frac{0}{0}, \frac{\infty}{\infty} \\
& 1^{\infty}, 0^{0}, \infty^{0} \\
& 0 \cdot \infty, \infty-\infty
\end{aligned}
$$

Which of the following limits
does NOT contain an indeterminate form?

$$
\begin{aligned}
& \text { A. } \lim _{, \ldots \infty}(x+1)^{3 x} \\
& \text { B. } \lim _{x \rightarrow 0^{x}} x^{6 x} \\
& \text { C. } \lim _{x \rightarrow \infty} x^{2} e^{-x} \\
& \text { D. } \lim _{x \rightarrow 0^{+}}(\cos x)^{\frac{1}{x}}
\end{aligned}
$$

> L'Hopital's Rule Let f and g be two functions. Then IF: \& fand g are dfferentiable, \&) $\frac{f(x)}{g(x)}$ has the indeterminate form of of $\frac{0}{0}$ OR $\frac{\infty}{\infty}$ $\lim _{x \rightarrow g^{\prime}(x)} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ THEN: $\quad \lim _{x \rightarrow<} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$

Evaluate the limit:

$$
\lim _{x \rightarrow 0} \frac{3^{x}-1}{4^{x}-1}
$$

A. 0
B. 1
C. $\ln (3 / 4)$
D. $(\ln 3) /(\ln 4)$

Use L'Hopital's rule and logarithms to evaluate

 the following limits.Logarithm rule : $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} e^{\ln (f(x))}=e^{\lim _{x \rightarrow a} \ln (f(x))}$
$\lim _{x \rightarrow 0^{+}} x^{\frac{1}{1(s)}}$
$\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{x}$

Evaluate the limit:

$$
\lim _{x \rightarrow 0^{+}}(1+2 x)^{\frac{\bar{x}}{x}}
$$

A. e^{2}
B. $e^{1 / 2}$
C. 1
D. Infinity

Some Common Limits

1) If $x>0$, then $\lim _{n \rightarrow \infty} x^{1 / n}=1$.
2) If $|x|<1$, then $\lim _{n \rightarrow \infty} x^{n}=0$.
3) If $\alpha>0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}=0$.
4) $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$
5) $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0$
6) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$
7) $\lim _{n \rightarrow \infty} n^{1 / n}=1$

EXERCISES
 4.5

Finding Limits in Two Ways

In Exercises 1-6, use I'Hôpital's Rule to evaluate the limit. Then evaluate the limit using a method studied in Chapter 2.

1. $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}-4}$
2. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}$
3. $\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x}{7 x^{2}+1}$
4. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{3}-x-3}$
5. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
6. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{x^{3}+x+1}$

Applying l'Hôpital's Rule

Use l'Hôpital's rule to find the limits in Exercises 7-50.
7. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$
8. $\lim _{x \rightarrow-5} \frac{x^{2}-25}{x+5}$
9. $\lim _{t \rightarrow-3} \frac{t^{3}-4 t+15}{t^{2}-t-12}$
10. $\lim _{t \rightarrow-1} \frac{3 t^{3}+3}{4 t^{3}-t+3}$
11. $\lim _{x \rightarrow \infty} \frac{5 x^{3}-2 x}{7 x^{3}+3}$
12. $\lim _{x \rightarrow \infty} \frac{x-8 x^{2}}{12 x^{2}+5 x}$
13. $\lim _{t \rightarrow 0} \frac{\sin t^{2}}{t}$
14. $\lim _{t \rightarrow 0} \frac{\sin 5 t}{2 t}$
15. $\lim _{x \rightarrow 0} \frac{8 x^{2}}{\cos x-1}$
16. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
17. $\lim _{\theta \rightarrow \pi / 2} \frac{2 \theta-\pi}{\cos (2 \pi-\theta)}$
18. $\lim _{\theta \rightarrow-\pi / 3} \frac{3 \theta+\pi}{\sin (\theta+(\pi / 3))}$
19. $\lim _{\theta \rightarrow \pi / 2} \frac{1-\sin \theta}{1+\cos 2 \theta}$
20. $\lim _{x \rightarrow 1} \frac{x-1}{\ln x-\sin \pi x}$
21. $\lim _{x \rightarrow 0} \frac{x^{2}}{\ln (\sec x)}$
22. $\lim _{x \rightarrow \pi / 2} \frac{\ln (\csc x)}{(x-(\pi / 2))^{2}}$
23. $\lim _{t \rightarrow 0} \frac{t(1-\cos t)}{t-\sin t}$
24. $\lim _{t \rightarrow 0} \frac{t \sin t}{1-\cos t}$
25. $\lim _{x \rightarrow(\pi / 2)^{-}}\left(x-\frac{\pi}{2}\right) \sec x$
26. $\lim _{x \rightarrow(\pi / 2)^{-}}\left(\frac{\pi}{2}-x\right) \tan x$
27. $\lim _{\theta \rightarrow 0} \frac{3^{\sin \theta}-1}{\theta}$
28. $\lim _{\theta \rightarrow 0} \frac{(1 / 2)^{\theta}-1}{\theta}$
29. $\lim _{x \rightarrow 0} \frac{x 2^{x}}{2^{x}-1}$
30. $\lim _{x \rightarrow 0} \frac{3^{x}-1}{2^{x}-1}$
31. $\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{\log _{2} x}$
32. $\lim _{x \rightarrow \infty} \frac{\log _{2} x}{\log _{3}(x+3)}$
33. $\lim _{x \rightarrow 0^{+}} \frac{\ln \left(x^{2}+2 x\right)}{\ln x}$
34. $\lim _{x \rightarrow 0^{-}} \frac{\ln \left(e^{x}-1\right)}{\ln x}$
35. $\lim _{y \rightarrow 0} \frac{\sqrt{5 y+25}-5}{y}$
36. $\lim _{y \rightarrow 0} \frac{\sqrt{a y+a^{2}}-a}{y}, a>0$
37. $\lim _{x \rightarrow \infty}(\ln 2 x-\ln (x+1))$
38. $\lim _{x \rightarrow 0^{-}}(\ln x-\ln \sin x)$
39. $\lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{2}}{\ln (\sin x)}$
40. $\lim _{x \rightarrow 0^{-}}\left(\frac{3 x+1}{x}-\frac{1}{\sin x}\right)$
41. $\lim _{x \rightarrow 1^{+}}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)$
42. $\lim _{x \rightarrow 0^{-}}(\csc x-\cot x+\cos x)$
43. $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{e^{y}-\theta-1}$
44. $\lim _{h \rightarrow 0} \frac{e^{h}-(1+h)}{h^{2}}$
45. $\lim _{t \rightarrow \infty} \frac{e^{\prime}+t^{2}}{e^{t}-t}$
46. $\lim _{x \rightarrow \infty} x^{2} e^{-x}$
47. $\lim _{x \rightarrow 0} \frac{x-\sin x}{x \tan x}$
48. $\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)^{2}}{x \sin x}$
49. $\lim _{\theta \rightarrow 0} \frac{\theta-\sin \theta \cos \theta}{\tan \theta-\theta}$
50. $\lim _{x \rightarrow 0} \frac{\sin 3 x-3 x+x^{2}}{\sin x \sin 2 x}$

Indeterminate Powers and Products
Find the limits in Exercises 51-66.
51. $\lim _{x \rightarrow 1^{+}} x^{1 /(1-x)}$
52. $\lim _{x \rightarrow 1^{+}} x^{1 /(x-1)}$
53. $\lim _{x \rightarrow \infty}(\ln x)^{1 / x}$
54. $\lim _{x \rightarrow 0^{+}}(\ln x)^{1 /(x-e)}$
55. $\lim _{x \rightarrow 0^{+}} x^{-1 / 1 \mathrm{~h} x}$
56. $\lim _{x \rightarrow \infty} x^{1 / \ln x}$
57. $\lim _{x \rightarrow \infty}(1+2 x)^{1,(2 \ln x)}$
58. $\lim _{x \rightarrow 0}\left(e^{x}+x\right)^{1 / x}$
59. $\lim _{x \rightarrow 0^{+}} x^{x}$
60. $\lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)^{x}$
61. $\lim _{x \rightarrow \infty}\left(\frac{x+2}{x-1}\right)^{x}$
62. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x+2}\right)^{1 / x}$
63. $\lim _{x \rightarrow 0^{+}} x^{2} \ln x$
64. $\lim _{x \rightarrow 0^{+}} x(\ln x)^{2}$
65. $\lim _{x \rightarrow 0^{+}} x \tan \left(\frac{\pi}{2}-x\right)$
66. $\lim _{x \rightarrow 0^{+}} \sin x \cdot \ln x$

Theory and Applications
L'Hôpital's Rule does not help with the limits in Exercises 67-74. Try it-you just keep on cycling. Find the limits some other way.
67. $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}$
68. $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{\sin x}}$
69. $\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\sec x}{\tan x}$
70. $\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}$
71. $\lim _{x \rightarrow \infty} \frac{2^{x}-3^{x}}{3^{x}+4^{x}}$
72. $\lim _{x \rightarrow-\infty} \frac{2^{x}+4^{x}}{5^{x}-2^{x}}$
73. $\lim _{x \rightarrow \infty} \frac{e^{x^{2}}}{x e^{x}}$
74. $\lim _{x \rightarrow 0^{+}} \frac{x}{e^{-1 / x}}$
75. Which one is correct, and which one is wrong? Give reasons for your answers.

$$
\text { a. } \lim _{x \rightarrow 3} \frac{x-3}{x^{2}-3}=\lim _{x \rightarrow 3} \frac{1}{2 x}=\frac{1}{6} \quad \text { b. } \lim _{x \rightarrow 3} \frac{x-3}{x^{2}-3}=\frac{0}{6}=0
$$

76. Which one is correct, and which one is wrong? Give reasons for your answers.
a. $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x^{2}-\sin x}=\lim _{x \rightarrow 0} \frac{2 x-2}{2 x-\cos x}$

$$
=\lim _{x \rightarrow 0} \frac{2}{2+\sin x}=\frac{2}{2+0}=1
$$

b. $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x^{2}-\sin x}=\lim _{x \rightarrow 0} \frac{2 x-2}{2 x-\cos x}=\frac{-2}{0-1}=2$

EXERCISES 8.5

Expanding Quotients into Partial Fractions Expand the quotients in Exercises 1-8 by partial fractions.

1. $\frac{5 x-13}{(x-3)(x-2)}$ 2. $\frac{5 x-7}{x^{2}-3 x+2}$
2. $\frac{x+4}{(x+1)^{2}}$
3. $\frac{2 x+2}{x^{2}-2 x+1}$
4. $\frac{z+1}{z^{2}(z-1)}$
5. $\frac{z}{z^{3}-z^{2}-6 z}$
6. $\frac{t^{2}+8}{t^{2}-5 t+6}$
7. $\frac{r^{4}+9}{r^{4}+9 r^{2}}$

Nonrepeated Linear Factors
In Exercises 9-16, express the integrand as a sum of partial fractions and evaluate the integrals.
9. $\int \frac{d x}{1-x^{2}}$
10. $\int \frac{d x}{x^{2}+2 x}$
11. $\int \frac{x+4}{x^{2}+5 x-6} d x$
12. $\int \frac{2 x+1}{x^{2}-7 x+12} d x$
13. $\int_{4}^{8} \frac{y d y}{y^{2}-2 y-3}$
14. $\int_{1 / 2}^{1} \frac{y+4}{y^{2}+y} d y$
15. $\int \frac{d t}{t^{3}+t^{2}-2 t}$
16. $\int \frac{x+3}{2 x^{3}-8 x} d x$

Repeated Linear Factors
In Exercises 17-20, express the integrand as a sum of partial fractions and evaluate the integrals.
17. $\int_{0}^{1} \frac{x^{3} d x}{x^{2}+2 x+1}$
18. $\int_{-1}^{0} \frac{x^{3} d x}{x^{2}-2 x+1}$
19. $\int \frac{d x}{\left(x^{2}-1\right)^{2}}$
20. $\int \frac{x^{2} d x}{(x-1)\left(x^{2}+2 x+1\right)}$

Irreducible Quadratic Factors
In Exercises 21-32, express the integrand as a sum of partial fractions and evaluate the integrals.
21. $\int_{0}^{1} \frac{d x}{(x+1)\left(x^{2}+1\right)}$
22. $\int_{1}^{\sqrt{3}} \frac{3 t^{2}+t+4}{t^{3}+t} d t$
23. $\int \frac{y^{2}+2 y+1}{\left(y^{2}+1\right)^{2}} d y$
24. $\int \frac{8 x^{2}+8 x+2}{\left(4 x^{2}+1\right)^{2}} d x$
25. $\int \frac{2 s+2}{\left(s^{2}+1\right)(s-1)^{3}} d s$
26. $\int \frac{s^{4}+81}{s\left(s^{2}+9\right)^{2}} d s$
27. $\int \frac{x^{2}-x+2}{x^{3}-1} d x$
28. $\int \frac{1}{x^{4}+x} d x$
29. $\int \frac{x^{2}}{x^{4}-1} d x$
30. $\int \frac{x^{2}+x}{x^{4}-3 x^{2}-4} d x$
31. $\int \frac{2 \theta^{3}+5 \theta^{2}+8 \theta+4}{\left(\theta^{2}+2 \theta+2\right)^{2}} d \theta$
32. $\int \frac{\theta^{4}-4 \theta^{3}+2 \theta^{2}-3 \theta+1}{\left(\theta^{2}+1\right)^{3}} d \theta$

Improper Fractions

In Exercises 33-38, perform long division on the integrand, write the proper fraction as a sum of partial fractions, and then evaluate the integral.
33. $\int \frac{2 x^{3}-2 x^{2}+1}{x^{2}-x} d x$
34. $\int \frac{x^{4}}{x^{2}-1} d x$
35. $\int \frac{9 x^{3}-3 x+1}{x^{3}-x^{2}} d x$
36. $\int \frac{16 x^{3}}{4 x^{2}-4 x+1} d x$
37. $\int \frac{y^{4}+y^{2}-1}{y^{3}+y} d y$
38. $\int \frac{2 y^{4}}{y^{3}-y^{2}+y-1} d y$

Evaluating Integrals
Evaluate the integrals in Exercises 39-54.
39. $\int \frac{e^{\prime} d t}{e^{z}+3 e^{\prime}+2}$
40. $\int \frac{e^{t}+2 e^{2 t}-e^{t}}{e^{2 t}+1} d t$
41. $\int \frac{\cos y d y}{\sin ^{2} y+\sin y-6}$
42. $\int \frac{\sin \theta d \theta}{\cos ^{2} \theta+\cos \theta-2}$
43. $\int \frac{(x-2)^{2} \tan ^{-1}(2 x)-12 x^{3}-3 x}{\left(4 x^{2}+1\right)(x-2)^{2}} d x$
44. $\int \frac{(x+1)^{2} \tan ^{-1}(3 x)+9 x^{3}+x}{\left(9 x^{2}+1\right)(x+1)^{2}} d x$
45. $\int \frac{1}{x^{3 / 2}-\sqrt{x}} d x$
46. $\int \frac{1}{\left(x^{1 / 3}-1\right) \sqrt{x}} d x$
47. $\int \frac{\sqrt{x+1}}{x} d x$
48. $\int \frac{1}{x \sqrt{x+9}} d x$
(Hint: Let $x+1=u^{2}$.)
49. $\int \frac{1}{x\left(x^{4}+1\right)} d x$
(Hint: Multiply by $\frac{x^{3}}{x^{3}}$)
50. $\int \frac{1}{x^{5}\left(x^{5}+4\right)} d x$
51. $\int \frac{1}{\cos 2 \theta \sin \theta} d \theta$
52. $\int \frac{1}{\cos \theta+\sin 2 \theta} d \theta$
53. $\int \frac{\sqrt{1+\sqrt{x}}}{x} d x$
54. $\int \frac{\sqrt{x}}{\sqrt{2-\sqrt{x}}+\sqrt{x}} d x$

Use any method to evaluate the integrals in Exercises 55-66.
55. $\int \frac{x^{3}-2 x^{2}-3 x}{x+2} d x$
56. $\int \frac{x+2}{x^{3}-2 x^{2}-3 x} d x$
57. $\int \frac{2^{x}-2^{-x}}{2^{x}+2^{-x}} d x$
58. $\int \frac{2^{x}}{2^{x}+2^{x}-2} d x$
59. $\int \frac{1}{x^{4}-1} d x$
60. $\int \frac{x^{4}-1}{x^{5}-5 x+1} d x$
61. $\int \frac{\ln x+2}{x(\ln x+1)(\ln x+3)} d x$
62. $\int \frac{2}{x(\ln x-2)^{3}} d x$
63. $\int \frac{1}{\sqrt{x^{2}-1}} d x$
64. $\int \frac{x}{x+\sqrt{x^{2}+2}} d x$
65. $\int x^{5} \sqrt{x^{3}+1} d x$
66. $\int x^{2} \sqrt{1-x^{2}} d x$

Initial Value Problems
Solve the initial value problems in Exercises 67-70 for x as a function of t.
67. $\left(r^{2}-3 t+2\right) \frac{d x}{d t}=1 \quad(t>2), \quad x(3)=0$
68. $\left(3 t^{4}+4 t^{2}+1\right) \frac{d x}{d t}=2 \sqrt{3}, \quad x(1)=-\pi \sqrt{3} / 4$
69. $\left(t^{2}+2 t\right) \frac{d x}{d t}=2 x+2 \quad(t, x>0), \quad x(1)=1$
70. $(t+1) \frac{d x}{d t}=x^{2}+1 \quad(t>-1), \quad x(0)=0$

Applications and Examples
In Exercises 71 and 72, find the volume of the solid generated by revolving the shaded region about the indicated axis.
71. The x-axis

72. The y-axis

73. Find the length of the curve $y=\ln \left(1-x^{2}\right), 0 \leq x \leq \frac{1}{2}$.
74. Integrate $\int \sec \theta d \theta$ by
a. multiplying by $\frac{\sec \theta+\tan \theta}{\sec \theta+\tan \theta}$ and then using a u-substitution.
b. writing the integral as $\int \frac{1}{\cos \theta} d \theta$. Then multiply by $\frac{\cos \theta}{\cos \theta}$.
use a trigonometric identity and a u-substitution, and finally integrate using partial fractions.

Math 1552

Section 8.8
 Improper Integrals

Step 1: Replace ∞ with N is take limut.
Slep 2: Integrate definde miegral on muserial $[0,5]$
httpss://www.geogebra.org/calculator//m4x9bh6a

Example 2: Find the area

$$
A=\int_{2}^{\infty} \frac{2}{x^{2}-1} d x
$$

Step I:

$$
\int_{2}^{\infty} \frac{2}{x^{2}-1} d x=\lim _{N \rightarrow \infty} \int_{2}^{\infty} \frac{2}{x^{2}-1}
$$

Step 2
Evaluate definite miegral andiorite horizontal
 answer in terms of a function of N.

Step 3: take limit as $N \rightarrow \infty$

SIDE NOTE: " $\infty-\infty$ " is not alary 0 . For example

Example

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \sqrt{x^{2}-2}-x=\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{x^{2}-x}-x\right) \cdot\left(\sqrt{x^{2}-x}+x\right)}{\sqrt{x^{2}-x}+2}= \\
=\lim _{x \rightarrow+\infty} \frac{x^{2}-x-x^{2}}{\sqrt{x^{2}-x}+x}=\lim _{x \rightarrow+\infty} \frac{-x}{\sqrt{x^{2}-x}+x}= \\
=\lim _{x \rightarrow+\infty} \frac{-x}{x^{\frac{2}{2}}+x}=\lim _{x \rightarrow+\infty} \frac{-x}{2 x}=\frac{-1}{2}
\end{gathered}
$$

Ex Evaluate $\int_{0}^{4} \frac{1}{\sqrt{x}} d x$
Step 1: replace the x-value where the asymptote is with ε and take the 1 min .

Step 2: Evaluate the definite integral

Step 3: the tow lint as $\varepsilon \rightarrow 0^{+}$

Improper integrals

A definite integral is improper if:

- The function has a vertical asymptote at $x=a$, $x=b$, or at some point c in the interval (a, b).
- One or both of the limits of integration are infinite (positive or negative infinity).

> Which integral(s) is (are) improper?
> 1) $\int_{0}^{x} \tan (2 x) d x$
> 2) $\int_{-1}^{x-3} \frac{x-3}{x^{2}-2 x-3} d x$
> 3) $\int_{0}^{x} \cos (x) d x$
> 4) $\int \frac{x-2}{x^{2}-6 x+8} d x$

Convergence of an Integral

- If an improper integral evaluates to a finite number, we say it converges.
- If the integral evaluates to $\pm \infty$ or to, $\infty-\infty$, we say the integral diverges.

EXERCISES 8.8

Evaluating Improper Integrals
The integrals in Exercises 1-34 converge. Evaluate the integrals without using tables.

1. $\int_{0}^{\infty} \frac{d x}{x^{2}+1}$
2. $\int_{1}^{\infty} \frac{d x}{x^{1.001}}$
3. $\int_{0}^{1} \frac{d x}{\sqrt{x}}$
4. $\int_{0}^{4} \frac{d x}{\sqrt{4-x}}$
5. $\int_{-1}^{1} \frac{d x}{x^{2 / 3}}$
6. $\int_{-8}^{1} \frac{d x}{x^{1 / 3}}$
7. $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
8. $\int_{0}^{1} \frac{d r}{r^{0.999}}$
9. $\int_{-\infty}^{-2} \frac{2 d x}{x^{2}-1}$
10. $\int_{-\infty}^{2} \frac{2 d x}{x^{2}+4}$
11. $\int_{2}^{\infty} \frac{2}{v^{2}-v} d v$
12. $\int_{2}^{\infty} \frac{2 d t}{t^{2}-1}$
13. $\int_{-\infty}^{\infty} \frac{2 x d x}{\left(x^{2}+1\right)^{2}}$
14. $\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+4\right)^{3 / 2}}$
15. $\int_{0}^{1} \frac{\theta+1}{\sqrt{\theta^{2}+2 \theta}} d \theta$
16. $\int_{0}^{2} \frac{s+1}{\sqrt{4-s^{2}}} d s$
17. $\int_{0}^{\infty} \frac{d x}{(1+x) \sqrt{x}}$
18. $\int_{1}^{\infty} \frac{1}{x \sqrt{x^{2}-1}} d x$
19. $\int_{0}^{\infty} \frac{d v}{\left(1+v^{2}\right)\left(1+\tan ^{-1} v\right)}$
20. $\int_{0}^{\infty} \frac{16 \tan ^{-1} x}{1+x^{2}} d x$
21. $\int_{-\infty}^{0} \theta e^{\theta} d \theta$
22. $\int_{0}^{\infty} 2 e^{-\theta} \sin \theta d \theta$
23. $\int_{-\infty}^{0} e^{-x \mid} d x$
24. $\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$
25. $\int_{0}^{1} x \ln x d x$
26. $\int_{0}^{1}(-\ln x) d x$
27. $\int^{2} \xrightarrow{d s}$
28. $\int_{0}^{2} \frac{d s}{\sqrt{4-s^{2}}}$
29. $\int^{1} 4 r d r$
30. $\int_{0}^{1} \frac{4 r d r}{\sqrt{1-r^{4}}}$
31. $\int_{1}^{2} \frac{d s}{s \sqrt{s^{2}-1}}$
32. $\int_{2}^{4} \frac{d t}{t \sqrt{t^{2}-4}}$
33. $\int_{-1}^{4} \frac{d x}{\sqrt{|x|}}$
34. $\int_{0}^{2} \frac{d x}{\sqrt{|x-1|}}$
35. $\int_{-1}^{\infty} \frac{d \theta}{\theta^{2}+5 \theta+6}$
36. $\int_{0}^{\infty} \frac{d x}{(x+1)\left(x^{2}+1\right)}$

Testing for Convergence

In Exercises 35-68, use integration, the Direct Comparison Test, or the Limit Comparison Test to test the integrals for convergence. If more than one method applies, use whatever method you prefer.
35. $\int_{1 / 2}^{2} \frac{d x}{x \ln x}$ 36. $\int_{-1}^{1} \frac{d \theta}{\theta^{2}-2 \theta}$
37. $\int_{1 / 2}^{\infty} \frac{d x}{x(\ln x)^{3}}$ 38. $\int_{0}^{\infty} \frac{d \theta}{\theta^{2}-1}$
39. $\int_{0}^{\pi / 2} \tan \theta d \theta$
40. $\int_{0}^{\pi / 2} \cot \theta d \theta$
41. $\int_{0}^{1} \frac{\ln x}{x^{2}} d x$
42. $\int_{1}^{2} \frac{d x}{x \ln x}$
43. $\int_{0}^{\ln 2} x^{-2} e^{-1 / x} d x$
44. $\int_{0}^{1} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x$
45. $\int_{0}^{\pi} \frac{d t}{\sqrt{t}+\sin t}$
46. $\int_{0}^{1} \frac{d t}{t-\sin t}$ (Hint: $t \geq \sin t$ for $t \geq 0$)
47. $\int_{0}^{2} \frac{d x}{1-x^{2}}$
48. $\int_{0}^{2} \frac{d x}{1-x}$
49. $\int_{-1}^{1} \ln |x| d x$
50. $\int_{-1}^{1}-x \ln |x| d x$
51. $\int_{1}^{\infty} \frac{d x}{x^{3}+1}$
52. $\int_{4}^{\infty} \frac{d x}{\sqrt{x}-1}$
53. $\int_{2}^{\infty} \frac{d v}{\sqrt{v-1}}$
54. $\int_{0}^{\infty} \frac{d \theta}{1+e^{\theta}}$
55. $\int_{0}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$
56. $\int_{2}^{\infty} \frac{d x}{\sqrt{x^{2}-1}}$
57. $\int_{1}^{\infty} \frac{\sqrt{x+1}}{x^{2}} d x$
58. $\int_{2}^{\infty} \frac{x d x}{\sqrt{x^{4}-1}}$
59. $\int_{\pi}^{\infty} \frac{2+\cos x}{x} d x$
60. $\int_{\pi}^{\infty} \frac{1+\sin x}{x^{2}} d x$
61. $\int_{4}^{\infty} \frac{2 d t}{t^{3 / 2}-1}$
62. $\int_{2}^{\infty} \frac{1}{\ln x} d x$
$J_{4} t^{3 / 2}-1$
$j_{2} \ln x$
63. $\int_{1}^{\infty} \frac{e^{x}}{x} d x$
64. $\int_{e^{\prime}}^{\infty} \ln (\ln x) d x$
65. $\int_{1}^{\infty} \frac{1}{\sqrt{e^{x}-x}} d x$
66. $\int_{1}^{\infty} \frac{1}{e^{x}-2^{x}} d x$
67. $\int_{-\infty}^{\infty} \frac{d x}{\sqrt{x^{4}+1}}$
68. $\int_{-\infty}^{\infty} \frac{d x}{e^{x}+e^{-x}}$

Theory and Examples

69. Find the values of p for which each integral converges.
a. $\int_{1}^{2} \frac{d x}{x(\ln x)^{p}}$
b. $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{p}}$

Math 1552

Sections 10.1:

Sequences

Today's Learning Goals

- Use proper notation to denote a sequence.
- Understand how to find lower and upper bounds for sequences.
- Determine if a sequence is monotonic.
- Find limits of sequences when possible.

Ex. Find a Formula for the

Sequence and determine the limit.
(a) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots$
(b) $\frac{\ln (2)}{3}, \frac{-\ln (3)}{5}, \frac{\ln (4)}{7}, \frac{\ln (5)}{9}, \ldots$
(c) $1, \frac{2}{\sqrt{3}}, \frac{3}{\sqrt{4}}, \frac{4}{\sqrt{5}}, \frac{5}{\sqrt{6}}, \cdots$

Write the general term of the sequence below.
$-\frac{2}{3}, \frac{3}{4},-\frac{4}{5}, \frac{5}{6}, \ldots$
А) $a_{n}=\frac{(-1)^{*} n}{n+1}$
B) $a_{n}=\frac{(-1)^{n-1} n}{n+1}$
C) $a_{n}=\frac{(-1)^{*}(n+1)}{n+2}$
D) $a_{n}=\frac{(-1)^{n+1}(n+1)}{n+2}$

Ex. Find the limit
(a) $\lim _{n \rightarrow \infty} \frac{4-7 n^{2}}{n^{6}+3}$
(b) $\lim _{n \rightarrow \infty}\left(\frac{n+1}{n-1}\right)^{n}$

Example:

Determine whether or not the sequence converges. If so, find the limit.

Find the limit, if it exists.

$$
\left\{\frac{2 n+1}{1-3 n}\right\}
$$

A. 0
B. $-2 / 3$
C. $2 / 3$
D. Diverges

Some Common Limits

$$
\begin{aligned}
& \text { 1) If } x>0 \text {, then } \lim _{n \rightarrow \infty} x^{1 / n}=1 . \\
& \text { 2) If }|x|<1 \text {, then } \lim _{n \rightarrow \infty} x^{n}=0 . \\
& \text { 3) If } \alpha>0 \text {, then } \lim _{x \rightarrow \infty} \frac{1}{n^{\alpha}}=0 . \\
& \begin{array}{ll}
\text { 4) } \lim _{x \rightarrow \infty} \frac{x^{*}}{n!}=0 & \text { 5) } \lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0 \\
\text { 6) } \lim _{x \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} & \text { 7) } \lim _{n \rightarrow \infty} n^{1 / n}=1
\end{array}
\end{aligned}
$$

Ex. Determine if the sequence is monotone.
(a) $a_{n}=\frac{3 n+1}{n+1}$
(b) $a_{n}=\frac{2^{n}}{n!}$

LUB and GLB

- An upper bound of a set S is a number M that is greater than or equal to each element in S .
- The smallest possible upper bound is called the least upper bound (l.u.b.).
- A lower bound of a set S is a number m that is less than or equal to each element in S .
- The largest possible lower bound is called the greatest lower bound (g.l.b.).

Find the l.u.b. and g.I.b. of the sequence:

$$
\left\{\frac{n+1}{n}\right\}
$$

A. Lu .b. $=1, g \mid b=0$
B. $L u . b,=2, g .1 b=0$
C. $L u, b,=2, g \mid b,=1$
D. No Lu.b., glee. $=0$

Monotone Sequences
A sequence is called monotonic if one of the following statements hold:
(i) $a_{n}<a_{n+1}$ for all n (strictly increasing)
(ii) $a_{n} \leq a_{n+1}$ for all n (monotonically increasing)
(iii) $a_{n}>a_{*+1}$ for all n (strictly decreasing)
(iv) $a_{n} \geq a_{n+1}$ for all n (monotonically decreasing)

Convergence Theorem
If a sequence $\left\{a_{n}\right\}$ is monotonic and bounded, then it converges. If the sequence is increasing, then $L=l . u . b$. If the sequence is decreasing, then $L=$ glib.

Section 10.1: 3, 17, 35, 41, 57, 129 (extra practice: 13, 19, 39, 93, 127, 133)

EXERCISES 10.1

Finding Terms of a Sequence

Each of Exercises 1-6 gives a formula for the nth term a_{n} of a sequence $\left\{a_{n}\right\}$. Find the values of a_{1}, a_{2}, a_{3}, and a_{4}.

1. $a_{n}=\frac{1-n}{n^{2}}$
2. $a_{n}=\frac{1}{n!}$
3. $a_{n}=\frac{(-1)^{n+1}}{2 n-1}$
4. $a_{n}=2+(-1)^{n}$
5. $a_{1}=2, \quad a_{n+1}=(-1)^{n+1} a_{n} / 2$
6. $a_{1}=-2, \quad a_{n+1}=n a_{n} /(n+1)$
7. $a_{1}=a_{2}=1, \quad a_{n+2}=a_{n+1}+a_{n}$
8. $a_{1}=2, \quad a_{2}=-1, \quad a_{n+2}=a_{n+1} / a_{n}$

Finding a Sequence's Formula

In Exercises 13-30, find a formula for the nth term of the sequence.
13. $1,-1,1,-1,1, \ldots$
14. $-1,1,-1,1,-1, \ldots$
15. $1,-4,9,-16,25, \ldots$
16. $1,-\frac{1}{4}, \frac{1}{9},-\frac{1}{16}, \frac{1}{25}, \ldots$
17. $\frac{1}{9}, \frac{2}{12}, \frac{2^{2}}{15}, \frac{2^{3}}{18}, \frac{2^{4}}{21}, \ldots$
18. $-\frac{3}{2},-\frac{1}{6}, \frac{1}{12}, \frac{3}{20}, \frac{5}{30}, \ldots$
19. $0,3,8,15,24, \ldots$
20. $-3,-2,-1,0,1, \ldots$
21. $1,5,9,13,17, \ldots$
22. $2,6,10,14,18, \ldots$
23. $\frac{5}{1}, \frac{8}{2}, \frac{11}{6}, \frac{14}{24}, \frac{17}{120}, \ldots$
24. $\frac{1}{25}, \frac{8}{125}, \frac{27}{625}, \frac{64}{3125}, \frac{125}{15,625}, \ldots$
25. $1,0,1,0,1, \ldots$
26. $0,1,1,2,2,3,3,4, \ldots$
27. $\frac{1}{2}-\frac{1}{3}, \frac{1}{3}-\frac{1}{4}, \frac{1}{4}-\frac{1}{5}, \frac{1}{5}-\frac{1}{6}, \ldots$
28. $\sqrt{5}-\sqrt{4}, \sqrt{6}-\sqrt{5}, \sqrt{7}-\sqrt{6}, \sqrt{8}-\sqrt{7}, \ldots$
29. $\sin \left(\frac{\sqrt{2}}{1+4}\right), \sin \left(\frac{\sqrt{3}}{1+9}\right), \sin \left(\frac{\sqrt{4}}{1+16}\right), \sin \left(\frac{\sqrt{5}}{1+25}\right), \ldots$
30. $\sqrt{\frac{5}{8}}, \sqrt{\frac{7}{11}}, \sqrt{\frac{9}{14}}, \sqrt{\frac{11}{17}}, \ldots$
5. $a_{n}=\frac{2^{n}}{2^{n+1}}$
6. $a_{n}=\frac{2^{n}-1}{2^{n}}$

Each of Exercises 7-12 gives the first term or two of a sequence along with a recursion formula for the remaining terms. Write out the first ten terms of the sequence.
7. $a_{1}=1, \quad a_{n+1}=a_{n}+\left(1 / 2^{n}\right)$
8. $a_{1}=1, \quad a_{n+1}=a_{n} /(n+1)$
41. $a_{n}=\left(\frac{n+1}{2 n}\right)\left(1-\frac{1}{n}\right)$
42. $a_{n}=\left(2-\frac{1}{2^{n}}\right)\left(3+\frac{1}{2^{n}}\right)$
43. $a_{n}=\frac{(-1)^{n+1}}{2 n-1}$
44. $a_{n}=\left(-\frac{1}{2}\right)^{n}$
45. $a_{n}=\sqrt{\frac{2 n}{n+1}}$
46. $a_{n}=\frac{1}{(0.9)^{n}}$
47. $a_{n}=\sin \left(\frac{\pi}{2}+\frac{1}{n}\right)$
48. $a_{n}=n \pi \cos (n \pi)$
49. $a_{n}=\frac{\sin n}{n}$
50. $a_{n}=\frac{\sin ^{2} n}{2^{n}}$
51. $a_{n}=\frac{n}{2^{n}}$
52. $a_{n}=\frac{3^{n}}{n^{3}}$
53. $a_{n}=\frac{\ln (n+1)}{\sqrt{n}}$
54. $a_{n}=\frac{\ln n}{\ln 2 n}$
55. $a_{n}=8^{1 / n}$
56. $a_{n}=(0.03)^{1 / n}$
57. $a_{n}=\left(1+\frac{7}{n}\right)^{n}$
58. $a_{n}=\left(1-\frac{1}{n}\right)^{n}$
59. $a_{n}=\sqrt[n]{10 n}$
60. $a_{n}=\sqrt[n]{n^{2}}$
61. $a_{n}=\left(\frac{3}{n}\right)^{1 / n}$
62. $a_{n}=(n+4)^{1 /(n+4)}$
63. $a_{n}=\frac{\ln n}{n^{1 / n}}$
64. $a_{n}=\ln n-\ln (n+1)$
65. $a_{n}=\sqrt[n]{4^{n} n}$
66. $a_{n}=\sqrt[n]{3^{2 n+1}}$
67. $a_{n}=\frac{n!}{n^{n}}$ (Hint: Compare with $1 / n$.)
68. $a_{n}=\frac{(-4)^{n}}{n!}$
69. $a_{n}=\frac{n!}{10^{6 n}}$
70. $a_{n}=\frac{n!}{2^{n} \cdot 3^{n}}$
71. $a_{n}=\left(\frac{1}{n}\right)^{1 /(\ln n)}$
72. $a_{n}=\frac{(n+1)!}{(n+3)!}$
73. $a_{n}=\frac{(2 n+2)!}{(2 n-1)!}$
74. $a_{n}=\frac{3 e^{n}+e^{-n}}{e^{n}+3 e^{-n}}$
75. $a_{n}=\frac{e^{-2 n}-2 e^{-3 n}}{e^{-2 n}-e^{-n}}$
76. $a_{n}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots$
$+\left(\frac{1}{n-2}-\frac{1}{n-1}\right)+\left(\frac{1}{n-1}-\frac{1}{n}\right)$

Section 10.1: 3, 17, 35, 41, 57, 129 (extra practice: 13, 19, 39, 93, 127, 133)

Convergence and Divergence
Which of the sequences $\left\{a_{n}\right\}$ in Exercises 31-100 converge, and which diverge? Find the limit of each convergent sequence.
31. $a_{n}=2+(0.1)^{n}$
32. $a_{n}=\frac{n+(-1)^{n}}{n}$
33. $a_{n}=\frac{1-2 n}{1+2 n}$
34. $a_{n}=\frac{2 n+1}{1-3 \sqrt{n}}$
35. $a_{n}=\frac{1-5 n^{4}}{n^{4}+8 n^{3}}$
36. $a_{n}=\frac{n+3}{n^{2}+5 n+6}$
37. $a_{n}=\frac{n^{2}-2 n+1}{n-1}$
38. $a_{n}=\frac{1-n^{3}}{70-4 n^{2}}$
39. $a_{n}=1+(-1)^{n}$
40. $a_{n}=(-1)^{n}\left(1-\frac{1}{n}\right)$

588 Chapter 10 Infinite Sequences and Series
88. $a_{n}=n\left(1-\cos \frac{1}{n}\right)$
89. $a_{n}=\sqrt{n} \sin \frac{1}{\sqrt{n}}$
90. $a_{n}=\left(3^{n}+5^{n}\right)^{1 / n}$
91. $a_{n}=\tan ^{-1} n$
92. $a_{n}=\frac{1}{\sqrt{n}} \tan ^{-1} n$
93. $a_{n}=\left(\frac{1}{3}\right)^{n}+\frac{1}{\sqrt{2^{n}}}$
94. $a_{n}=\sqrt[n]{n^{2}+n}$
95. $a_{n}=\frac{(\ln n)^{200}}{n}$
96. $a_{n}=\frac{(\ln n)^{5}}{\sqrt{n}}$
97. $a_{n}=n-\sqrt{n^{2}-n}$
98. $a_{n}=\frac{1}{\sqrt{n^{2}-1}-\sqrt{n^{2}+n}}$
99. $a_{n}=\frac{1}{n} \int_{1}^{n} \frac{1}{x} d x$
100. $a_{n}=\int_{1}^{n} \frac{1}{x^{p}} d x, \quad p>1$

$$
\text { 77. } \begin{aligned}
a_{n}= & (\ln 3-\ln 2)+(\ln 4-\ln 3)+(\ln 5-\ln 4)+\cdots \\
& +(\ln (n-1)-\ln (n-2))+(\ln n-\ln (n-1))
\end{aligned}
$$

78. $a_{n}=\ln \left(1+\frac{1}{n}\right)^{n}$
79. $a_{n}=\left(\frac{3 n+1}{3 n-1}\right)^{n}$
80. $a_{n}=\left(\frac{n}{n+1}\right)^{n}$
81. $a_{n}=\left(\frac{x^{n}}{2 n+1}\right)^{1 / n}, x>0$
82. $a_{n}=\left(1-\frac{1}{n^{2}}\right)^{n}$
83. $a_{n}=\frac{3^{n} \cdot 6^{n}}{2^{-n} \cdot n!}$
84. $a_{n}=\frac{(10 / 11)^{n}}{(9 / 10)^{n}+(11 / 12)^{n}}$
85. $a_{n}=\tanh n$
86. $a_{n}=\sinh (\ln n)$
87. $a_{n}=\frac{n^{2}}{2 n-1} \sin \frac{1}{n}$

In Exercises 121-124, determine if the sequence is monotonic and if it is bounded.
121. $a_{n}=\frac{3 n+1}{n+1}$
122. $a_{n}=\frac{(2 n+3)!}{(n+1)!}$
123. $a_{n}=\frac{2^{n} 3^{n}}{n!}$
124. $a_{n}=2-\frac{2}{n}-\frac{1}{2^{n}}$

Which of the sequences in Exercises 125-134 converge, and which diverge? Give reasons for your answers.
125. $a_{n}=1-\frac{1}{n}$
126. $a_{n}=n-\frac{1}{n}$
127. $a_{n}=\frac{2^{n}-1}{2^{n}}$
128. $a_{n}=\frac{2^{n}-1}{3^{n}}$
129. $a_{n}=\left((-1)^{n}+1\right)\left(\frac{n+1}{n}\right)$
130. The first term of a sequence is $x_{1}=\cos (1)$. The next terms are $x_{2}=x_{1}$ or $\cos (2)$, whichever is larger; and $x_{3}=x_{2}$ or $\cos (3)$, whichever is larger (farther to the right). In general,

$$
x_{n+1}=\max \left\{x_{n}, \cos (n+1)\right\}
$$

131. $a_{n}=\frac{1+\sqrt{2 n}}{\sqrt{n}}$
132. $a_{n}=\frac{4^{n+1}+3^{n}}{4^{n}}$
133. $a_{n}=\frac{n+1}{n}$
134. $a_{1}=1, \quad a_{n+1}=2 a_{n}-3$
