\qquad
Summer 2023
Quiz 1
Canvas email: \qquad
May 25
Time limit: 20 Minutes \qquad
\square
By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name: \qquad
Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (5 points) Give the general anti-derivative of the following function:

$$
f(x)=\frac{1}{2 \sqrt{x}}-e^{x / 5}+\frac{1}{\sqrt{9-x^{2}}}
$$

2. (5 points) Suppose $f(x)$ is an even function and $g(x)$ is an odd function. If $\int_{-2}^{2} f(x) d x=5$ and $\int_{-2}^{0} g(x) d x=2$, find $\int_{0}^{2} f(x)-g(x) d x$.
3. (10 points) Suppose $f(x)=(x+1)^{2}$. Use a general Riemann Sum

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x
$$

to evaluate the definite integral of $f(x)$ on the interval $[-1,3]$, by following these steps:
(a) Find the length of each subinterval Δx in terms of n.
(b) Evaluate x_{k}^{*} as the right-hand endpoint of the subinterval.

$$
\Delta x=\square
$$

(c) Evaluate the function at x_{k}^{*}, i.e. find $f\left(x_{k}^{*}\right)$. Simplify. $f\left(x_{k}^{*}\right)=$
(d) Using the following summation formulas to simplify the sigma notation, find an expression for $R_{n}=\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ that does not involve sigma's.
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
(e) Using the sum you found in the previous step, find the definite integral.

