Math 1			Name (Print):					
Summe Quiz 1			Canvas email:					
May 25 Time li) Minutes		Teaching Assistant/Section:					

By signing here, you agree to abide by the **Georgia Tech Honor Code**: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name:

Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (5 points) Give the **general** anti-derivative of the following function:

$$f(x) = \frac{1}{2\sqrt{x}} - e^{x/5} + \frac{1}{\sqrt{9 - x^2}}$$

2. (5 points) Suppose f(x) is an even function and g(x) is an odd function. If $\int_{-2}^{2} f(x) dx = 5$ and $\int_{-2}^{0} g(x) dx = 2$, find $\int_{0}^{2} f(x) - g(x) dx$.

3. (10 points) Suppose $f(x) = (x+1)^2$. Use a general Riemann Sum

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x$$

to evaluate the definite integral of f(x) on the interval [-1,3], by following these steps:

(a) Find the length of each subinterval Δx in terms of n.

- (b) Evaluate x_k^* as the right-hand endpoint of the subinterval. $x_k^* =$
- (c) Evaluate the function at x_k^* , i.e. find $f(x_k^*)$. Simplify. $f(x_k^*) =$
- (d) Using the following summation formulas to simplify the sigma notation, find an expression for $R_n = \sum_{k=1}^n f(x_k^*) \Delta x$ that does not involve sigma's.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

(e) Using the sum you found in the previous step, find the definite integral.