Math 1552
Summer 2023
Quiz 1
May 25
Time limit: 20 Minutes

GT ID: | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community y.

Sign Your Name:

Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (5 points) Give the general anti-derivative of the following function:

$$
\begin{gathered}
f(x)=\frac{1}{2} x^{-1 / 2}-e^{x / 5}-\frac{f(x)=\frac{1}{2 \sqrt{x / 2}}-e^{7 / 5}+\frac{1}{\sqrt{\left.99\left(1-\frac{1}{3}\right)^{2}\right)^{2}}}=\frac{1}{2} x^{-1 / 2}-e^{x / 5}-\frac{1}{3} \frac{1}{\sqrt{1-\left(\frac{1}{3}\right)^{2}}}}{F(x)=\frac{1}{2} \cdot \frac{x^{-1 / 2+1}}{-1 / 2+1}-5 e^{x / 5}-\frac{1}{3} \cdot 3 \sin ^{-1}(x / 3)+C} \\
=\sqrt{x}-5 e^{x / 5}-\sin ^{-1}(x / 3)+C
\end{gathered}
$$

2. (5 points) Suppose $f(x)$ is an even function and $g(x)$ is an odd function. If $\int_{-2}^{2} f(x) d x=5$ and $\int_{-2}^{0} g(x) d x=2$, find $\int_{0}^{2} f(x)-g(x) d x$.
(1)

$$
\int_{-2}^{2} f(x) d x=2 \cdot \int_{0}^{2} f(x) d x
$$

(2) $\int_{-2}^{0} g(x) d x=-\int_{0}^{2} g(x) d x$
3. (10 points) Suppose $f(x)=(x+1)^{2}$. Use a general Riemann Sum

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x
$$

to evaluate the definite integral of $f(x)$ on the interval $[-1,3]$, by following these steps:
(a) Find the length of each subinterval Δx in terms of n. $\Delta x=\frac{b-a}{n}=\frac{3-(-1)}{n}, 4 / n$
(b) Evaluate x_{k}^{*} as the right-hand endpoint of the subinterval.

$$
x_{k}=a+k \Delta x=-1+4 k / n
$$

(c) Evaluate the function at x_{k}^{*}, i.e. find $f\left(x_{k}^{*}\right)$. Simplify.

$16 \mathrm{k}^{2} / \mathrm{n}^{2}$

$$
f\left(x_{4}\right)=\left(-1+\frac{4 n}{n}+1\right)^{2}=\frac{16 r^{2}}{n^{2}}
$$

(d) Using the following summation formulas to simplify the sigma notation, find an expression for $R_{n}=\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ that does not involve sigma's.

$$
\begin{aligned}
R_{n}=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x & =\sum_{k=1}^{\sum_{k=1}^{n} k=\frac{n(n+1)}{2}} \frac{16 k^{2}}{n^{2}} \cdot \frac{4}{n}=\frac{64}{n^{2}} \sum_{k=1}^{n} k^{2}=\frac{64}{n^{2}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{32}{3} \frac{n(n+1)(2 n+1)}{n^{3}}
\end{aligned}
$$

(e) Using the sum you found in the previous step, find the definite integral.

$$
\begin{aligned}
& \left.\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \frac{32}{3} \frac{n(n+1)(2 n+1)}{n^{3}}=\frac{32}{3} \cdot \frac{2}{1}=\frac{64}{3} \right\rvert\, \\
& \frac{\text { Chuck } \omega / \text { FTC }}{\{u-\text { sub }} \int_{-1}^{3}(x+1)^{2} d x=\int_{0}^{4} u^{2} d u=\frac{1}{3} u^{3}\left(1_{0}^{4}=\frac{1}{3} \cdot 64-\frac{1}{3} \cdot 0\right. \\
& =64+3
\end{aligned}
$$

