Math 1552
Summer 2023
Quiz 1 Practice
May 25, 2023
Time limit: 20 Minutes

Canvas email:
Teaching Assistant/Section:

GT ID:

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name:

Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (5 points) Give the general anti-derivative of the following function:

$$
\begin{aligned}
& f(x)=2 \sec (t \tan x-\sec x) \\
& f(x)=2 \sec x \tan x-2 \sec ^{2} x \\
& F(x)=2 \sec x-2 \tan x+C
\end{aligned}
$$

2. (5 points) Suppose $f(x)$ is an even function and $g(x)$ is an odd function. If $\int_{0}^{3} f(x) d x=5$ and $\int_{0}^{3} g(x) d x=2$, find $\int_{-3}^{3} f(x)+g(x) d x$.

$$
f \text { is even so } \int_{-3}^{3} f(x) d x=2 \cdot \int_{0}^{3} f(x) d x=2.5=10
$$

$$
g \text { is odd so } \quad \int_{-3}^{3} g(x) d x=0
$$

Therefore,

$$
\begin{aligned}
\int_{-3}^{3} f(x)+g(x) d x & =\int_{-3}^{3} f(x) d x+\int_{-3}^{3} g(x) \int x \\
=10+0 & =10
\end{aligned}
$$

Cheer ans w/ FTC.
3. (10 points) Suppose $f(x)=x^{2}+1$. Use a general Riemann Sum

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x
$$

$$
\begin{aligned}
& \int_{-1}^{2} x^{2}+1 d x=\frac{1}{3} x^{3}+\left.x\right|_{-1} ^{2} \\
& =(8 / 3+2)-\left(-\frac{1}{3}-1\right)
\end{aligned}
$$

to evaluate the definite integral of $f(x)$ on the interval $[-1,2]$, by following these steps: $=3+2+1$
(a) Find the length of each subinterval Δx in terms of $n . \Delta x=\frac{b-a}{n}=\frac{2-(-1)}{n}$
(b) Evaluate $x_{\text {体 }}^{*}$ as the right-hand endpoint of the subinterval.

$$
x_{12}=a+k \Delta x=-1+k \cdot 3 / n
$$

(c) Evaluate the function at x_{k}^{*}, i.e. find $f\left(x_{k}^{*}\right)$. Simplify.
$-1+3 k / n$

$$
\frac{9 n^{2}}{n^{2}}-\frac{6 x}{n}+2
$$

$$
\begin{aligned}
f\left(x_{n}^{*}\right) & =f(-1+3 u / n)=\left(-1+\frac{3 x}{n}\right)^{2}+1 \\
& =\frac{9 n^{2}}{n^{2}}-\frac{6 k}{n}+1+1=\frac{9 k^{2}}{n^{2}}-\frac{6 k}{n}+2
\end{aligned}
$$

(d) Using the following summation formulae, find $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$

$$
\begin{aligned}
& \sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& R_{n}=\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x=\sum_{k=1}^{n}\left(\frac{9 k^{2}}{n^{2}}-\frac{6 k}{n}+2\right)\left(\frac{3}{n}\right) \\
& =\sum_{k=1}^{n} \frac{27 k^{2}}{n^{3}}-\frac{18 k}{n^{2}}+\frac{6}{n}=\frac{27}{n^{3}} \sum_{k=1}^{n} k^{2}-\frac{18}{n^{2}} \sum_{k=1}^{n} k+\frac{6}{n} \sum_{k=1}^{n} 1 \\
& =\frac{27}{h^{3}} \cdot \frac{(h n+)(2 n+1)}{6}-\frac{18}{n^{2}} \frac{n(n+1)}{2}+\frac{6}{9} \text {. }
\end{aligned}
$$

(e) Using the sum you found in the previous step, find the definite integral.

$$
\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \frac{27}{6} \frac{n(n+1)(2 n+1)}{n^{3}}-\frac{18}{2} \frac{n(n+1)}{n^{2}}+6
$$

$$
=\frac{27}{6} \cdot 2-9+6=9-9+6=6
$$

