Math 1552
Summer 2023
Quiz 2 Practice
May 25
Time limit: 20 Minutes

GT ID: | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name:
Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (5 points) Compute $F^{\prime}(x)$ using the fundamental theorem of calculus.

$$
F(x)=G(2 x)-G\left(x^{2}\right)
$$

$$
F(x)=\int_{x^{2}}^{2 x} \frac{\sqrt{t}}{t^{2}-1} d t
$$

$$
\begin{aligned}
& G(x)=\int_{0}^{x} \frac{\sqrt{t}}{t^{2}-1} d t \\
& G^{\prime}(x)=\frac{\sqrt{x}}{x^{2}-1} \text { (by FTc) }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow F^{\prime}(x)=G^{\prime}(2 x) *(2 x)^{\prime}-G^{\prime}\left(x^{2}\right)\left(x^{2}\right)^{\prime} \\
&=\frac{\sqrt{2 x}}{(2 x)^{2}-1} * 2-\frac{\sqrt{x^{2}}}{\left(x^{2}\right)^{2}-1}\left(x^{2}\right)^{\prime}=\left[\frac{\sqrt{x}}{\sqrt{2\left(x^{2}-1\right)}}-\frac{2|x| x}{x^{4}-1}\right. \\
& \int \frac{f(4 \text { points) Use } u \text {-substitution to find the general anti-derivative of } f(x) .}{\frac{1}{\sqrt{x}} e^{\sqrt{x}}} \sec (\underbrace{e^{\sqrt{x}}+1}_{u}) \tan (\underbrace{e^{\sqrt{x} e^{-\sqrt{x}}}+1} \sec \left(e^{\sqrt{x}}+1\right) \tan \left(e^{\sqrt{x}}+1\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \int \underbrace{\frac{1}{\sqrt{x}}}_{x} e^{\sqrt{x}} \sec (\underbrace{e^{\frac{f x}{x}}+1}_{u}) \tan (\underbrace{\sqrt{\sqrt{x}-\sqrt{x}} \sec \left(e^{\sqrt{x}}+1\right) \tan \left(e^{\sqrt{x}}+1\right)}_{u} \\
= & \int \sec u \tan u+2 d u \\
= & 2 \sec u+c=2 \sec \left(e^{\sqrt{x}}+1\right)+C
\end{aligned}
$$

U-sub Box

$$
\begin{aligned}
& u=e^{\sqrt{x}}+1 \\
& d u=e^{\sqrt{x}}(\sqrt{x})^{\prime} d x \\
& d u=\frac{1}{2 \sqrt{x}} e^{\sqrt{x}} d x \\
& 2 d u=\frac{1}{\sqrt{x}} e^{\sqrt{x}} d x
\end{aligned}
$$

3. (10 points) In this problem you will find the area between the curves $y=f(x)=x^{3}+x^{2}$ and $y=g(x)=2 x^{2}+6 x$ by following these steps:
(a) Find the x-values of the intersections points of the curves. Separate values with commas.

Set $y=y$
$x^{3}+x^{2}=2 x^{2}+6 x$
$\Rightarrow x(x-3)(x+2)=0$ $x=-2,0,3$
$\Rightarrow x^{3}-x^{2}-6 x=0$

$$
x=3,-2,0
$$

$\Rightarrow x\left(x^{2}-x-6\right)=0$
(b) Determine the intervals where $f(x)$ or $g(x)$ is on top/bottom. Separate intervals with U .

$$
f \text { on top }(-2,0)
$$

$$
f(-1)=-1+1=0 \quad g(-1)=2-6=-4
$$

$$
f(1)=2 \quad g(1)=8
$$

(c) Set up integrals to find the area for each region between the curves. Do not evaluate.

Area 1: $\int_{-2}^{0}\left(x^{3}+x^{2}\right)-\left(2 x^{2}+6 x\right) d x$
Area 2: $\int_{0}^{3}\left(2 x^{2}+6 x\right)-\left(x^{3}+x^{2}\right) d x$
(d) Finally, find the area by evaluating the integrals you set up from part (c) and adding the areas together.
Area 1: $\int_{-2}^{0} x^{3}-x^{2}-6 x d x=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-\left.3 x^{2}\right|_{-2} ^{0}$

$$
\begin{aligned}
& =0-\left(\frac{1}{4} \cdot 16-\frac{1}{3}(-8)-12\right) \\
& =-4+\frac{8}{3}+12=8-\frac{8}{3}=16 / 3
\end{aligned}
$$

Area 2: $\int_{0}^{3}-x^{3}+x^{2}+6 x d x=-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+\left.3 x^{2}\right|_{0} ^{3}$
Total

$$
=-\frac{1}{4} \cdot 81+9+27
$$

$$
\frac{16}{3}+\frac{63}{4}=\frac{64+189}{12}=\frac{253}{12}=36-\frac{81}{4}=\frac{144-81}{4}=\frac{63}{4}
$$

