Math 1552	Summer 2023
Quiz 4 Jun	e 15
Time limit:	20 Minutes

Name (Print):

Teaching	Assistant	/Section
----------	-----------	----------

	l	l			
	l	l			
	l	l			
	l	l			
	l	l			
CTID	l	l			
GIID:					

By signing here, you agree to abide by the **Georgia Tech Honor Code**: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

a.	T 7	3.7	
Sign	Your	Name:	

Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (4 points) Find a general formula a_n for the *n*-th term of the sequence. You do not need to show work on this problem but please put your final answer in the box.

Hint: be sure to include your starting value for n.

$$\frac{1}{3}, \frac{2}{6}, \frac{2^2}{9}, \frac{2^3}{12}, \frac{2^4}{15}, \dots$$

2. (10 points) Evaluate the improper integral.

$$\int_2^\infty \frac{2x}{(x^2+1)^2} \ dt$$

3. (6 points) For each sequence, determine the limit of the sequence as n tends to infinity. If the limit diverges, write either DNE, ∞ DNE, or $-\infty$ DNE in the box, as appropriate. You do not have to show your work for problems on this page, but please put your final answer in the box.

(a)
$$\left\{ \left(1 - \frac{2}{n}\right)^n \right\}$$

(b)
$$\left\{\frac{3^n}{n!}\right\}$$

(c)
$$\left\{ (-1)^n \frac{n}{n+1} \right\}$$