\qquad
\qquad

GT ID: | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name: \qquad
Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (4 points) Find a general formula a_{n} for the n-th term of the sequence. You do not need to show work on this problem but please put your final answer in the box.

Hint: be sure to include your starting value for n.

$$
\frac{1}{3}, \frac{2}{6}, \frac{2^{2}}{9}, \frac{2^{3}}{12}, \frac{2^{4}}{15}, \ldots
$$

2. (10 points) Evaluate the improper integral.

$$
\int_{2}^{\infty} \frac{2 x}{\left(x^{2}+1\right)^{2}} d t
$$

3. (6 points) For each sequence, determine the limit of the sequence as n tends to infinity. If the limit diverges, write either DNE, ∞ DNE, or $-\infty$ DNE in the box, as appropriate. You do not have to show your work for problems on this page, but please put your final answer in the box.
(a) $\left\{\left(1-\frac{2}{n}\right)^{n}\right\}$
(b) $\left\{\frac{3^{n}}{n!}\right\}$
(c) $\left\{(-1)^{n} \frac{n}{n+1}\right\}$

