Name (Print):


Teaching Assistant/Section:


By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community

Sign Your Name:


Please clearly organize our work, show all steps, simplify all answers, and BOX your answers.

1. (4 points) Find a general formula $a_{n}$ for the $n$-th term of the sequence. You do not need to show work on this problem but please put your final answer in the box.
Hint: be sure to include your starting value for $n$.

2. (10 points) Evaluate the improper integral.

$$
\int_{2}^{\infty} \frac{2 x}{\left(x^{2}+1\right)^{2}} d t
$$



$$
\begin{aligned}
& \int_{2}^{N} \frac{2 x}{\left(x^{2}+1\right)^{2}} d x=\int_{*}^{*} \frac{1}{u^{2}} d u=\left.\frac{-1}{u}\right|_{*} ^{*} \\
& \quad=\left.\frac{-1}{x^{2}+1}\right|_{2} ^{N}=\frac{-1}{N^{2}+1}-\frac{-1}{5}=\frac{1}{5}-\frac{1}{N^{2}+1}
\end{aligned}
$$

$$
\text { So } \int_{2}^{\infty} \frac{2 x}{\left(x^{2}+1\right)^{2}} d x=\lim _{N \rightarrow 0} \frac{1}{5}-\frac{1}{N^{2}+1}=\frac{1}{5}-0=\frac{1}{5}
$$

3. (6 points) For each sequence, determine the limit of the sequence as $n$ tends to infinity. If the limit diverges, write either DNE, $\infty$ DNE, or $-\infty$ DNE in the box, as appropriate. You do not have to show your work for problems on this page, but please put your final answer in the box.
(a) $\left\{\left(1-\frac{2}{n}\right)^{n}\right\}$

$$
\begin{aligned}
& a_{n}=\left(1-\frac{2}{n}\right)^{n} \\
& b_{n}=\ln \left(a_{n}\right)=n \cdot \ln \left(1-\frac{2}{n}\right)=\frac{\ln \left(1-\frac{2}{n}\right)}{1 / n}
\end{aligned}
$$

Since $a_{n}=e^{b_{n}}=e^{\ln \left(a_{n}\right)}$

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{1-2 / n} \cdot\left(1-\frac{2}{n}\right)^{\prime}}{-1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{1-2 / n} \cdot \frac{-2}{n^{2}} \cdot-n^{2}=-2
$$

LiMp "O"
(b) $\left\{\frac{3^{n}}{n!}\right\}$

Notice that $a_{n}=\frac{3^{n}}{n!}$ satisfies
$a_{n+1}<\frac{1}{2} a_{n}$ whenever $n \geqslant 6$, since

$$
a_{n+1}=\frac{3^{n+1}}{(n+1)!}=\frac{3 \cdot 3^{n}}{(n+1) n!}=\frac{3}{n+1} \cdot a_{n} \text {. So } a_{n \rightarrow 0}
$$

(c) $\left\{(-1)^{n} \frac{n}{n+1}\right\}$

Since $a_{n}=\frac{n}{n+1}$ converges to 1, the alternating sequence $(-1)^{n} \frac{n}{n+1}$ diverges

