n20

(4n+1)

Teaching Assistant/Section:

Hint: be sure to include your starting value for n. $\frac{1}{2}, \frac{-5}{6}, \frac{9}{24}, \frac{-13}{120}, \frac{17}{720}, \dots$ odd Number j a) Hernstor j

Z!=2, 3!=6, 4!=24, 5!=120, 6!=720

denormators are Enchancels

2. (10 points) Evaluate the improper integral.

 $\int_{0}^{\infty} \frac{2}{t^2 - 1} dt$

$$\int_{Z}^{N} \frac{z}{t^{2}-1} dt = \int_{Z}^{N} \frac{-1}{t+1} + \frac{1}{t-1} dt = -\ln(t+1) + \ln(t-1) \int_{Z}^{N} \frac{1}{2} \frac{1}{t+1} + \frac{1}{t-1} dt = -\ln(t+1) + \ln(t-1) \int_{Z}^{N} \frac{1}{t+1} \frac{1}{t-1} \frac{1}{t-1} dt = -\ln(t+1) + \ln(t-1) \int_{Z}^{N} \frac{1}{t+1} \frac{1}{t-1} \frac{$$

 $\frac{2}{t^{2}-1} = \frac{A}{t+1} + \frac{B}{t-1}$ $A(t-1) \rightarrow B(t+1) = 2 = \int_{0}^{\infty} \left(\frac{N-1}{N+1}\right) + \int_{0}^{\infty} (3).$ $\Rightarrow t(A+B) + (-A+B) = 2$ $A+B=0 = B = \frac{1}{A} = -1$ $So \int_{0}^{\infty} \frac{2}{t^{2}-1} = \lim_{p \to 0} \int_{0}^{p} \frac{2}{t^{2}-1} dt = \lim_{p \to 0} \int_{0}^{p} \frac{2}{t^{2}-1} dt$

 $N-1 \rightarrow 1 \quad \text{ar } N \rightarrow \infty \qquad = \lim_{N \rightarrow \infty} \ln\left(\frac{N-1}{N+1}\right) + \ln 3 = \ln 3$ $N \rightarrow \ln\left(\frac{N-1}{N+1}\right) \rightarrow \ln(1) = 0$ $K = N \rightarrow \infty$

3. (6 points) For each sequence, determine the limit of the sequence as n tends to infinity. If the limit diverges, write either DNE, ∞ DNE, or $-\infty$ DNE in the box, as appropriate. You do not have to show your work for problems on this page, but please put your final answer in the box.

(a)
$$\left\{ \left(1 + \frac{2}{n}\right)^{-n} \right\}$$

 $Ch = \left(1 + \frac{2}{n}\right)^{-n}$
 $bn = bn(an) = -n \cdot bn(1 + \frac{2}{n}) = \frac{bn(1 + \frac{2}{n})}{-1/n}$
 $bn = bn(an) = -n \cdot bn(1 + \frac{2}{n}) = \frac{bn(1 + \frac{2}{n})}{-1/n}$
 $bn = bn(1 + \frac{2}{n})^{-1}$
 $bn = bn(1 + \frac{2}{n})^{-1$