Name (Print):

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name:

Please clearly organizeyur work, show all steps, simplify all answers, and BOX your answers.

1. (4 points) Find a general formula a_{n} for the n-th term of the sequence. You do not need to show work on this problem but please put your final answer in the box.
Hint: be sure to include your starting value for n.
numerators are every other $\frac{1}{2}, \frac{-5}{6}, \frac{9}{24}, \frac{-13}{120}, \frac{17}{720}, \ldots$ add number, ad a) ternatirg denominators are fructriculs $\frac{(-1)^{n}(4 n+1)}{(n+2)!}, n \geqslant 0$

$$
2!=2,3!=6,4!=24,5!=120,6!=720
$$

2. (10 points) Evaluate the improper integral.

$$
\int_{2}^{\infty} \frac{2}{t^{2}-1} d t
$$

$$
\int_{2}^{N} \frac{z}{t^{2}-1} d t=\int_{2}^{N} \frac{-1}{t+1}+\frac{1}{t-1} d t=-\ln (t+1)+\left.\ln (t-1)\right|_{2} ^{N}
$$

$$
\frac{2}{t^{2}-1}=\frac{A}{t+1}+\frac{B}{t-1}
$$

$$
\begin{aligned}
& A(t-1)+B(t+1)=2 \\
& \Rightarrow t(A+B)+(-A+B)=2 \\
& A+B=0 \quad B=1, A=-1 \\
& -A+B=2 \quad
\end{aligned}
$$

$$
=-\ln (N+1)+\ln (N-1)-(-\ln (3)+\ln (1))
$$

$$
=\ln \left(\frac{N-1}{N+1}\right)+\ln (3)
$$

So $\int_{2}^{\infty} \frac{2}{t^{2}-1} d t=\lim _{N \rightarrow \infty} \int_{2}^{N} \frac{2}{t^{2}-1} d t$
(3)

$$
\begin{aligned}
& \frac{N-1}{N+1} \rightarrow 1 \text { ar } N \rightarrow \infty \\
& \text { So } \ln \left(\frac{N-1}{N+1}\right) \rightarrow \ln _{\text {as }}(1)=0
\end{aligned}
$$

$$
=\lim _{N \rightarrow \infty} \ln \left(\frac{N-1}{N+1}\right)+\ln 3=\ln 3
$$

3. (6 points) For each sequence, determine the limit of the sequence as n tends to infinity. If the limit diverges, write either DNE, ∞ DNE, or $-\infty$ DNE in the box, as appropriate. You do not have to show your work for problems on this page, but please put your final answer in the box.

$$
\begin{aligned}
& \text { (a) }\left\{\left(1+\frac{2}{n}\right)^{-n}\right\} \\
& e^{-2} \\
& a_{n}=\left(1+\frac{2}{n}\right)^{-n} \\
& b_{n}=\ln \left(a_{n}\right)=-n \cdot \ln \left(1+\frac{2}{n}\right)=\frac{\ln \left(1+\frac{2}{n}\right)}{-1 / n} \\
& \text { So } a_{n} \rightarrow e^{-2} \text { as } n \rightarrow \infty \\
& \text { since } a_{n}=e^{b_{n}}=e^{\ln \left(a_{n}\right)} \\
& \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{1+2 / n}\left(1+\frac{2}{n}\right)^{\prime}}{+1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{2}{n}} \cdot \frac{-2}{n^{2}} \cdot n^{2}=\frac{1}{1+0} \cdot(-2)=-2,
\end{aligned}
$$

$$
\text { (b) }\left\{\frac{(-1)^{n} n!}{4^{n}}\right\}
$$

duE
$a_{n}=\frac{n!}{4^{n}}$ diverges since when $n \geq 8$

$$
a_{n+1}=\frac{(n+1)!}{4^{n+1}}=\frac{n+1}{4} \cdot \frac{n!}{4^{n}}>2 \cdot a_{n}
$$

Since the sequence is alternating and $\frac{n!}{4^{n}}$ grows without bowed, the sequence diverges
(c) $\left\{\frac{\ln \left(\frac{1}{n}\right)}{n^{2}}\right\}$
use L'Hop " $\frac{\infty}{\infty}$ "

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\ln (1 / n)}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1 / 1 / n}{} \frac{-1}{n^{2}} \\
& 2 n=\lim _{n \rightarrow \infty} \frac{-n / n^{2}}{2 n} \\
&=\lim _{n \rightarrow \infty} \frac{-1}{n} \cdot \frac{1}{2 n}=\lim _{n \rightarrow \infty} \frac{-1}{2 n^{2}}=0
\end{aligned}
$$

