Name (Print):
Quiz 5 July 6
Time limit: 20 Minutes
Teaching Assistant/Section:

GT ID:

Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (3 points) For the given series $\sum a_{n}$, write the ratio $\frac{a_{n+1}}{a_{n}}$ from the ratio test. Simplify your answer but do not take a limit.

$$
\begin{aligned}
& \sum_{n=1}^{\sum_{n}^{(n+1)!}} \quad \frac{a_{n+1}}{a_{n}}= \\
& a_{n}=\frac{3 n+1)!}{(n+1)} \\
& a_{n+1}=\frac{3^{n+1}}{(n+1+1)!}=\frac{3 \cdot 3^{n}}{(n+2)!}
\end{aligned}
$$

2. (3 points) Briefly explain the flaw in the following argument. Use complete sentences, justify your reasoning, and use correct terminology from the class.
The series $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{4}+1}$ converges by the direct comparison test, since you can compare the terms $a_{n}=\frac{n^{2}+1}{n^{4}+1}$ to the terms $b_{n}=\frac{n^{2}}{n^{4}}=\frac{1}{n^{2}}$.

$$
n=2 \quad a_{2}=\frac{5}{17} \text { and } b_{2}=\frac{4}{16}=\frac{1}{4} \text { but } 5 / 17 \neq 1 / 4
$$

Since $a_{n} \$$ bn been Thanh \sum br converges you
Can DOT conclude that \sum an converges.
3. ($\$$ points) Determine if each series converges or diverges. Fully justify your answer for credit, e.g., state the convergence test you used and clearly state the necessary conditions for the test you
(a) $\sum_{n=1}^{\infty} \frac{n^{2}+1}{}$ limit comparison w/ $b_{n}=1 / n^{2}$

$$
\begin{aligned}
& a_{n}=\frac{n^{2}+1}{n^{4}+1} \quad b_{n}=1 / n^{2} \\
& \frac{a_{n}}{b_{n}}=\frac{n^{2}+1}{n^{4}+1} \cdot \frac{n^{2}}{1}=\frac{n^{4}+n^{2}}{n^{4}+1} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1=C
\end{aligned}
$$

But $\sum_{b a n}=\sum \frac{1}{n^{2}}$
Converges by p-series test
w) $p=2>1$

Since $c>0$, and finite, by limituysur campers So
\Rightarrow Kan of Eban both converge or both dinge.
(b) $\sum_{n=1}^{\infty} \frac{4^{n}}{(3 n)^{n}}$
root test

$$
a_{n}=\frac{4^{n}}{(3 n)^{n}}
$$

So

$$
\left(a_{n}\right)^{1 / n}=\left(\frac{4^{n}}{(3 n)^{n}}\right)^{1 / n}=\frac{4}{3 n} \rightarrow 0=L
$$

Since $L<1$, by the root test
Kan converges

