Name (Print):
Teaching Assistant/Section:

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name:

Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (5 points) Find the interval I and radius R of convergence of the given power series. For the interval of convergence, give your answer using interval notation or using inequality notation.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\sqrt{n} x^{n}}{3^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{\sqrt{n} x^{n}}{3^{n}} \quad|\angle|<1 \Rightarrow-1<\frac{x}{3}<1 \Rightarrow-3<x<3 \\
& r=3 \\
& \begin{array}{l}
\text { test } x= \pm 3 \\
\text { Sepamtely }
\end{array} \sum \frac{\sqrt{n}}{3}(-3)^{n}=\sum(1)^{n / \sqrt{n}} \quad \sum \frac{\pi}{3^{n}}\left(33^{n}=\sum \sqrt{n}\right.
\end{aligned}
$$

2. (5 points) Find the Taylor series expansion of $f(x)$ at $x=0$ for the given function. If you use a known (common) Taylor series, please carefully state the known series that you are using as part of your work.

$$
f(x)=\frac{4 x}{1+x^{3}}
$$

3. (10 points) Determine if the given alternating series converges absolutely, converges conditionally, or diverges.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{3}+1}}$
$a_{n}=\frac{1}{\sqrt{n^{2}+1}} \rightarrow 0$ as $n \rightarrow \infty$
So series $\sum(-)^{n}$ an converges. by ald. series test
¿an converges? Try limit composts on
W) $b_{n}=\frac{1}{n^{3 / 2}}$

$$
\frac{a_{n}}{b_{n}}=\frac{1}{\sqrt{n^{3}+1}} \cdot \frac{n^{3 / 2}}{1}=\sqrt{\frac{n^{3}}{n^{3}+1}} \rightarrow 1=c
$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{3^{n}}$
converges absolutely

Since $c>0$ and Ebon converges by p-test w) $p=3 h$, The series Ear also converges
diverges

$$
a_{n}=\frac{n!}{3^{n}} \text {, notice } \quad a_{n+1}=\frac{(n+1)!}{3^{n+1}}=\frac{n+1}{3} \cdot \frac{n!}{3^{n}}=\frac{n+1}{3} \cdot a_{n}
$$

Since $\lim _{n \rightarrow \infty} a_{n}=+\infty$ DUE
The series $\sum(-1)^{2} a_{n}$ diverges by
The divergence test.

