Name (Print):

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name:

Please clearly organize your work, show all steps, simplify all answers, and BOX your answers.

1. (3 points) Find the interval I and radius R of convergence of the given power series. For the interval of convergence, give your answer using interval notation or using inequality notation.

2. (3 points) Find the Taylor series expansion of $f(x)$ at $x=0$ for the given function. If you use a known (common) Taylor series, please carefully state the known series that you are using as part of your work.

$$
f(x)=x^{2} e^{3 x}
$$

We know that $\left(* \begin{array}{c}\text { common } \\ \text { pay lon serer }\end{array}\right)$

$$
e^{x} \stackrel{*}{=} \sum_{k=0}^{\infty} \frac{1}{k!} x^{k} \quad(\text { for call } x) \quad f(x)=\sum_{k=0}^{\infty} \frac{3^{k}}{k!} x^{k+2}
$$

So

3. (6 points) Determine if the given alternating series converges absolutely, converges conditionally, or diverges.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+1}}$

Converses
$a_{n}=\frac{1}{\sqrt{n^{2}+1}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$ so $\sum \in \|^{n} a_{n}$ converses by alternating tories test.
Does $\sum a_{r}$ also converse? Use limit comparison $\omega / b_{u}=1 / 2$

$$
\frac{a_{n}}{b_{n}}=\frac{1}{\sqrt{n^{2}+1}} \cdot \frac{n}{1}=\sqrt{\frac{n^{2}}{n^{2}+1}}
$$

So

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\sqrt{1}=1=c
$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3 n}{\ln n}$

$$
a_{n}=\frac{3 n}{\ln n}
$$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3}{y_{n}}=\lim _{n \rightarrow \infty} 3 n=+\infty \text { DOE }
$$

L'Hop $\frac{10}{\infty}$
So $\sum(-1)^{n} a_{n}$ diverges by the divergence test.

