Quick summary

A set of vectors $\{v_1, \ldots, v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

 $c_1v_1 + c_2v_2 + \dots + c_kv_k = 0\dots$

The columns of an $m \times n$ matrix A are linearly independent $\Leftrightarrow A$ has...

To check if $\{v_1, \ldots, v_k\}$ is linearly independent check if each v_i is...

Fact. Say v_1, \ldots, v_k are in \mathbb{R}^n . If k > n, then $\{v_1, \ldots, v_k\}$ is

Concept questions

Q1. True/False. If three vectors span \mathbb{R}^3 then those three vectors must be linearly independent.

 $\mathsf{Q2.}$ Which of the following true statements can be checked without row reduction?

- 1. $\{(3,3,4),(0,0,\pi),(0,\sqrt{2},0)\}$ is linearly independent
- 2. $\{(3,3,4), (0,10,20), (0,5,7)\}$ is linearly independent
- 3. $\{(3,3,4),(0,10,20),(0,5,7),(0,0,1)\}$ is linearly dependent
- 4. $\{(3,3,4), (0,10,20), (0,0,0)\}$ is linearly dependent

Q3. How many solutions can there be to Ax = b if the columns of A are linearly independent?

- 1. 0
- 2. 1
- 3. ∞

Application: Additive Color Theory

Every color is a vector in \mathbb{R}^3 with coordinates between 0 and 256. The three coordinates correspond to red, green, and blue.

Given colors v_1,\ldots,v_k , we can form a new color by making a linear combination

$$c_1v_1 + \cdots + c_kv_k$$

where $c_1 + \cdots + c_k = 1$

Example:

Application: Additive Color Theory

Consider now the three colors

$$\begin{pmatrix} 240\\ 140\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 120\\ 100 \end{pmatrix}, \begin{pmatrix} 60\\ 125\\ 75 \end{pmatrix}$$

Are these colors linearly independent? What does your answer tell you about the colors?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Application: Additive Color Theory

Consider now the two colors

$$\left(\begin{array}{c}180\\50\\200\end{array}\right), \left(\begin{array}{c}100\\150\\100\end{array}\right)$$

For which h is (116, 130, h) in the span of those two colors?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Section 1.8: Linear Transformations

Quick summary

Given an $m \times n$ matrix A we define a function

 $T_A : \mathbb{R}^n \to \mathbb{R}^m$ $T_A(v) =$

The domain of T_A is The co-domain/target of T_A is The range/image of T_A is

When m = n we can think of T_A as doing something to \mathbb{R}^n .

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if

- T(u+v) =
- T(cv) =

Fact. Every matrix transformation T_A is linear.

Section 1.8: Linear Transformations

Concept Questions

Q1. Say A is a $1 \times n$ matrix. If $T_A(v) = 3$ and $T_A(w) = -1$, then what is $T_A(7v - 5w)$?

Q2. Find a 3×3 matrix A so that $T_A(v) = v$ for all v in \mathbb{R}^3 .

Q3. Say A is an $m \times 2$ matrix. If the columns of A are linearly independent, what does the image of T_A look like geometrically?

(日) (日) (日) (日) (日) (日) (日) (日)

Section 1.8: Linear Transformations Examples

For each matrix A, describe what T_A does to \mathbb{R}^3 .

