Section 1.7: Linear Independence

Quick summary
A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ in \mathbb{R}^{n} is linearly independent if the vector equation

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0 \ldots
$$

The columns of an $m \times n$ matrix A are linearly independent $\Leftrightarrow A$ has...

To check if $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent check if each v_{i} is...

Fact. Say v_{1}, \ldots, v_{k} are in \mathbb{R}^{n}. If $k>n$, then $\left\{v_{1}, \ldots, v_{k}\right\}$ is

Section 1.7: Linear Independence

Concept questions

Q1. True/False. If three vectors span \mathbb{R}^{3} then those three vectors must be linearly independent.

Q2. Which of the following true statements can be checked without row reduction?

1. $\{(3,3,4),(0,0, \pi),(0, \sqrt{2}, 0)\}$ is linearly independent
2. $\{(3,3,4),(0,10,20),(0,5,7)\}$ is linearly independent
3. $\{(3,3,4),(0,10,20),(0,5,7),(0,0,1)\}$ is linearly dependent
4. $\{(3,3,4),(0,10,20),(0,0,0)\}$ is linearly dependent

Q3. How many solutions can there be to $A x=b$ if the columns of A are linearly independent?

1. 0
2. 1
3. ∞

Section 1.7: Linear Independence

Application: Additive Color Theory

Every color is a vector in \mathbb{R}^{3} with coordinates between 0 and 256 . The three coordinates correspond to red, green, and blue.

Given colors v_{1}, \ldots, v_{k}, we can form a new color by making a linear combination

$$
c_{1} v_{1}+\cdots+c_{k} v_{k}
$$

where $c_{1}+\cdots+c_{k}=1$
Example:

$$
\frac{1}{2} \square+\frac{1}{2} \square=\square
$$

Section 1.7: Linear Independence

Application: Additive Color Theory

Consider now the three colors

$$
\begin{gathered}
\left(\begin{array}{c}
240 \\
140 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
120 \\
100
\end{array}\right),\left(\begin{array}{c}
60 \\
125 \\
75
\end{array}\right) \\
\square
\end{gathered}
$$

Are these colors linearly independent? What does your answer tell you about the colors?

Section 1.7: Linear Independence

Application: Additive Color Theory

Consider now the two colors

$$
\begin{gathered}
\left(\begin{array}{c}
180 \\
50 \\
200
\end{array}\right),\left(\begin{array}{l}
100 \\
150 \\
100
\end{array}\right) \\
\square
\end{gathered}
$$

For which h is $(116,130, h)$ in the span of those two colors?

Section 1.8: Linear Transformations

Quick summary
Given an $m \times n$ matrix A we define a function

$$
\begin{gathered}
T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
T_{A}(v)=
\end{gathered}
$$

The domain of T_{A} is
The co-domain/target of T_{A} is
The range/image of T_{A} is

When $m=n$ we can think of T_{A} as doing something to \mathbb{R}^{n}.

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if

- $T(u+v)=$
- $T(c v)=$

Fact. Every matrix transformation T_{A} is linear.

Section 1.8: Linear Transformations

Q1. Say A is a $1 \times n$ matrix. If $T_{A}(v)=3$ and $T_{A}(w)=-1$, then what is

$$
T_{A}(7 v-5 w) ?
$$

Q2. Find a 3×3 matrix A so that $T_{A}(v)=v$ for all v in \mathbb{R}^{3}.

Q3. Say A is an $m \times 2$ matrix. If the columns of A are linearly independent, what does the image of T_{A} look like geometrically?

Section 1.8: Linear Transformations

Examples

For each matrix A, describe what T_{A} does to \mathbb{R}^{3}.

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

