Math 1553: Intro to Linear Algebra

Section 1.3: Span

Name: \qquad

1. Write the vector $\left[\begin{array}{c}6 \\ 11 \\ 6\end{array}\right]$ as a linear combination of the vectors $\mathbf{u}=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$.
2. Are the statements below true or false? If the statement is true, prove it. If it is false, provide a counterexample to show that it is false.
(a) The dimension of the span of a set of vectors is equal to the number of unpivoted columns in the row-reduced matrix.
(b) Every set of four or more vectors in \Re^{3} will span \Re^{3}.
(c) The span of any set must contain the zero vector.
3. Describe the span of the vectors. If the span is a line or plane, find the equation.
(a) $\overrightarrow{v_{1}}=\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{c}1 \\ -1 \\ -4\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{c}1 \\ 0 \\ -5\end{array}\right]$
(b) $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}-3 \\ -6 \\ -9\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$
