1. Show your work for the following problems.
(a) For the matrix A below, state all of the values of h for which A is invertible. Then, find A^{-1} for $h=3$.

$$
A=\left(\begin{array}{ccc}
1 & 1 & -2 \\
0 & 1 & -1 \\
2 & 4 & h
\end{array}\right)
$$

(b) Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a basis for a subspace V of \mathbb{R}^{3}, with $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 5\end{array}\right)$ and $\mathbf{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$. Let $\mathbf{u}=\left(\begin{array}{c}4 \\ 1 \\ 17\end{array}\right)$. What is $[\mathbf{u}]_{B}$?
(c) Describe the subspace V in part (b) geometrically.
2. (a) Consider the following two matrices:

$$
A=\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2 g & 2 h & 2 i \\
a+d & b+e & c+f \\
a & b & c
\end{array}\right)
$$

Suppose $\operatorname{det}(B)=5$. What is $\operatorname{det}(A)$? Give a short explanation.
(b) Let

$$
C=\left(\begin{array}{cc}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right), \quad D=\left(\begin{array}{cccc}
1 & 1 & 4 & 0 \\
5 & 0 & -1 & 2
\end{array}\right)
$$

Compute $(C D)^{T}$ or say that it is not defined.
3. Compute the volume of the parallelepiped in \mathbb{R}^{4} whose edges are formed by the following vectors:

$$
\left(\begin{array}{c}
3 \\
3 \\
-6 \\
6
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
0 \\
8
\end{array}\right),\left(\begin{array}{c}
-3 \\
1 \\
-4 \\
-4
\end{array}\right),\left(\begin{array}{c}
-1 \\
-3 \\
3 \\
-1
\end{array}\right)
$$

4. Consider the following matrix A. It is row equivalent to the given matrix B :

$$
A=\left(\begin{array}{llllll}
0 & 0 & 2 & 1 & 1 & 1 \\
1 & 2 & 0 & 2 & 2 & 2 \\
1 & 2 & 1 & 2 & 0 & 1 \\
1 & 2 & 3 & 3 & 1 & 2
\end{array}\right), \quad B=\left(\begin{array}{cccccc}
1 & 2 & 0 & 0 & -8 & -4 \\
0 & 0 & 1 & 0 & -2 & -1 \\
0 & 0 & 0 & 1 & 5 & 3 \\
0 & 0 & 1 & 0 & -2 & -1
\end{array}\right)
$$

(a) Find a basis for $\operatorname{Nul}(A)$.
(b) What is the dimension of $\operatorname{Nul}(A)$?
(c) Find a basis for $\operatorname{Col}(A)$.
(d) What is the rank of A ?
5. Let A be a nonzero 4×4 matrix with column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}$. For each of the parts below, does the statement imply that A is always invertible? Justify your answers with a short explanation or counterexample.
(a) $\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3}+\mathbf{a}_{4}=\mathbf{0}$.
(b) For all \mathbf{b} in \mathbb{R}^{4}, the augmented matrix $[A \mid \mathbf{b}]$ has 4 pivots.
(c) $\operatorname{Nul}(A)$ can be described geometrically by a line.
(d) The dimension of $\operatorname{Col}(A)$ is 2
(e) The determinant of A is 5 .

