Problem 1 Definitions

(20 points)
(i) Define what it means for the vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ to be linearly independent.
(ii) What does it mean for a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be linear?
(iii) What does it mean for a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be onto.
(iv) What is a basis for a subspace V of \mathbb{R}^{n}.

Problem 2 True or False

No need to justify. In the following A, B, and C are matrices and I stands for the identity matrix. (20 points)
(i) If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are linearly independent, then one of them is a multiple of the others.
(ii) If A and B are square matrices then $A B=B A$.
(iii) If $A B=A C$ and A is invertible, then $B=C$.
(iv) An $m \times n$ matrix A is invertible if its columns are linearly independent.
(v) A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with standard matrix A is onto if its columns $\operatorname{span} \mathbb{R}^{n}$.
(vi) If A is $m \times n$ and B is $n \times p$, then the transpose of $A B$ is $A^{T} B^{T}$.
(vii) If A is a 3×3 matrix and the equation $A \vec{x}=(1,1,1)$ has a unique solution, then A must be invertible.
(viii) If A is 3×4, then A cannot be one-to-one.
(ix) If A is $m \times n$ and the dimension of $\operatorname{Col} A=m$, then $A \vec{x}=\vec{b}$ is always consistent.
(x) The solution set to $A \vec{x}=0$ is a span.

Problem 3

(i) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that first rotates a vector \vec{x} by 90° in the clockwise direction and then reflects with respect to the first bisector $y=x$. Write down the standard matrix A of T.
(ii) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that first reflects with respect to the first bisector $y=x$ and then rotates by angle 90° in the counter-clockwise direction. Write down the standard matrix B of S.
(iii) How are A and B related? Choose one of the following:
a) A and B are transposes of each other.
b) They have the same columns interchanged.
c) A and B are inverses of each other.
d) The column space of A is the same as the nullspace of B.

Problem 4

Consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & -3 & 6 \\
2 & 1 & -8 \\
-1 & 4 & -5 \\
1 & -4 & 5
\end{array}\right]
$$

(i) Is A onto? Justify.
(ii) Is it one-to-one? Justify.
(iii) Find the basis for the $\operatorname{Col}(A)$.

Problem 5

Let A be the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 1 \\
2 & -4 & -1
\end{array}\right]
$$

(i) Find the inverse of the following matrix A if it exists.
(ii) Use the answer of part i) to solve the equation $A \vec{x}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ without performing any further row reductions.

