1. Let A be the matrix

$$A = \begin{bmatrix} 4 & 8 & 2 & 0 \\ 1 & 2 & -1 & 2 \\ 0 & 0 & 1 & 4 \\ 2 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find Nul(A) the null space of A. Be specific in your answer.

$$A \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & 4 & 1 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -12 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 0 & 0 & -12 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 0 & 0 & -12 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\chi = 5 \begin{bmatrix} -2 \\ i \\ 0 \end{bmatrix}$$
 $\begin{bmatrix} nul(A) = span \begin{cases} -2 \\ i \\ 0 \end{bmatrix} \end{cases}$

(b) Find a basis for Col(A) the column space of A.

(c) Describe Nul(A) geometrically in a few words.

(d) Describe Col(A) geometrically in a few words.

2. Let
$$A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$
.

(a) Find
$$A^{-1}$$
.

$$A^{-1} = \frac{1}{4.3-1.2} \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$$

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} .3 & -.1 \\ -.2 & 4 \end{bmatrix}$$

(b) Find the coordinate vector \mathbf{x} of $v = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$ in the basis $\left\{ \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$. Hint: these are the columns of A.

Soln X sot.

$$X = \frac{1}{10} \begin{pmatrix} 3 & -1 \\ -2 & 4 \end{pmatrix} \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -6-5 \\ 4+20 \end{bmatrix}$$

$$X = \begin{bmatrix} -11/10 \\ 12/5 \end{bmatrix}$$

(c) Does $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ belong to the column space of A for any $u_1, u_2 \in \mathbb{R}$? Justify your (4 pts.) answer for full credit.

3. Let A be the matrix

$$A = \begin{bmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}.$$

(a) Find A^{-1} . (12 pts.)

(c) Check your answer to part (a) by appealing to the definition of inverse. (4 pts.)

$$\frac{1}{2} \begin{bmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ -2 & -2 & 4 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} \cdot A = I$$

4. Find a basis for

$$\operatorname{span}\left\{\begin{bmatrix}1\\0\\0\\1\end{bmatrix},\begin{bmatrix}2\\0\\0\\2\end{bmatrix},\begin{bmatrix}0\\0\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\1\\0\end{bmatrix},\begin{bmatrix}3\\3\\3\\3\end{bmatrix}\right\}.$$

basis is
$$\{0, 0, 0, 0\}$$

- 5. If a 6×4 matrix A has exactly 3 pivot positions, then the null space Nul(A) is a subspace of \mathbb{R}^k and the column space Col(A) is a subspace of \mathbb{R}^ℓ . In this problem you will specify the values of k, ℓ , and state the rank and nullity of A. (2 pts. each)
 - (a) Nul(A) is a subspace of \mathbb{R}^k . Specify the value of k.

(b) Col(A) is a subspace of \mathbb{R}^{ℓ} . Specify the value of ℓ .

(c) What is the dimension of Nul(A) the null space of A?

(d) What is the rank of A?

- **6.** Suppose A is a 2×2 matrix and the null space Nul(A) is the line in \mathbb{R}^2 given by the equation y = 3x.
 - (a) What is det(A)? Justify your answer for full credit. (4 pts.)

(b) What is the rank of A? Justify your answer for full credit. (4 pts.)

$$\left(\operatorname{rank}(A) = 1\right)$$
 some $\operatorname{dim}(A) + \operatorname{rank}(A) = \text{th cols}$
 $1 + \operatorname{rank}(A) = 2$.

7. Suppose A and B are square 2×2 matrices and you can assume that A, B, and A + B are all invertible, and that AB = BA. Find the matrix equal to the following expression, that is, simplify the following expression. (5 pts.)

$$(A+B)^{-1}[(A^{2}-B^{2})A^{-1}-(A+B)]A$$

$$(A+B)^{-1}\left((A+B)(A-B)(A-B)(A^{-1}A$$

- 8. Suppose A is any 3×3 matrix such that the ref of A is $A \sim \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 2 \\ 0 & 0 & 4 \end{bmatrix}$. Is it true that
 - a basis for Col(A) is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\5\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\4 \end{bmatrix} \right\}$? Either give a counter-example or justify your answer in some way for full credit. (5 pts.)

yes.
$$VOHKLA) = 3$$
 so $(O(A) = \mathbb{R}^{2})$
and $3(0), (3), (2)$
and $3(0), (3), (2)$
 5 is 4 basis of \mathbb{R}^{3} ,

			C - 10