Instructor: Sal Barone

Name: _____

GT username: _____

- 1. No books or notes are allowed.
- 2. All calculators and/or electronic devices are not allowed.
- 3. Show all work and fully justify your answer to receive full credit.
- 4. Please BOX your answers.
- 5. Good luck!

Page	Max. Possible	Points
1	20	
2	30	
3	22	
4	16	
5	12	
Total	100	

1. Two parts. If $T : \mathbb{R}^5 \to \mathbb{R}^4$ is a linear transformation with standard matrix A, and the dimension of the null space of A is dim nul(A) = 3, then what is the dimension of the range of T? Justify your answer for full credit. Also, describe the range of T geometrically. (8 pts.)

2. Find a basis for the null space of the matrix A.

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 0 & 2 \end{bmatrix}$$

(12 pts.)

3. Find a basis for W.

$$W = \operatorname{span} \left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 6\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix}, \begin{bmatrix} 1\\-2\\-5 \end{bmatrix} \right\}.$$

4. For the three parts of this problem use the matrix A below.

$$A = \begin{bmatrix} 2 & 3 & 0 \\ -4 & 6 & 1 \\ 10 & 3 & 7 \end{bmatrix}$$

(a) Find the *LU* decomposition of *A*.

(10 pts.)

(b) Find the determinant of A. Show your work. *Hint: use part (a)* (8 pts.)

(c) Find all solutions to $A\mathbf{x} = 0$. Justify your answer for full credit. (4 pts.)

(8 pts.)

5. True or False. If v_1, v_2, v_3 are vectors in \mathbb{R}^3 such that none are scalar multiples of each other, then the set $\{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 . Either give a counterexample and explain why the statement is false, or give a clear justification for why the statement is true.

(8 pts.)

6. Find the inverse of A. Check your answer by matrix multiplication for full credit. (14 pts.)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

7. Find the standard coordinates of the vector
$$\begin{bmatrix} 3 \\ -2 \end{bmatrix}_{\mathcal{B}}$$
 where $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \right\}.$ (8 pts.)

8. Suppose the determinant of the matrix $\begin{vmatrix} a & b & c \\ 4 & 3 & 2 \\ 1 & 5 & 6 \end{vmatrix} = 5$. What is the determinant of

$\lceil 4 \rangle$	3	1		
1	5	6	?	(8 pts.)
$\begin{bmatrix} 4\\1\\3a \end{bmatrix}$	3b	3c		

- 9. Suppose A is a 3×3 matrix and det $(A^2) = 1$. Justify your answer to the following questions for full credit. (3 pts. each)
 - (a) True or False. A is invertible.

(b) True or False. The determinant of A is det(A) = 1.

(c) True or False. The columns of A span \mathbb{R}^3 .

(d) True or False. There are infinitely many solutions to Ax = b for some choice of b in R³.