Instructor: Sal Barone

Name: \qquad

GT username: \qquad

1. No books or notes are allowed.
2. All calculators and/or electronic devices are not allowed.
3. Show all work and fully justify your answer to receive full credit.
4. Please BOX your answers.
5. Good luck!

Page	Max. Possible	Points
1	20	
2	30	
3	22	
4	16	
5	12	
Total	100	

1. Two parts. If $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ is a linear transformation with standard matrix A, and the dimension of the null space of A is $\operatorname{dim} \operatorname{nul}(A)=3$, then what is the dimension of the range of T ? Justify your answer for full credit. Also, describe the range of T geometrically.
(8 pts.)
2. Find a basis for the null space of the matrix A.

$$
A=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
2 & 0 & 0 & 0 & 2
\end{array}\right]
$$

3. Find a basis for W.

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
-5
\end{array}\right]\right\} .
$$

4. For the three parts of this problem use the matrix A below.

$$
A=\left[\begin{array}{ccc}
2 & 3 & 0 \\
-4 & 6 & 1 \\
10 & 3 & 7
\end{array}\right]
$$

(a) Find the $L U$ decomposition of A.
(10 pts.)
(b) Find the determinant of A. Show your work. Hint: use part (a)
(8 pts.)
(c) Find all solutions to $A \mathbf{x}=0$. Justify your answer for full credit.
(4 pts.)
5. True or False. If v_{1}, v_{2}, v_{3} are vectors in \mathbb{R}^{3} such that none are scalar multiples of each other, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for \mathbb{R}^{3}. Either give a counterexample and explain why the statement is false, or give a clear justification for why the statement is true.
(8 pts.)
6. Find the inverse of A. Check your answer by matrix multiplication for full credit.
(14 pts.)

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

7. Find the standard coordinates of the vector $\left[\begin{array}{c}3 \\ -2\end{array}\right]_{\mathcal{B}}$ where $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]\right\}$. (8 pts.)
8. Suppose the determinant of the matrix $\left|\begin{array}{lll}a & b & c \\ 4 & 3 & 2 \\ 1 & 5 & 6\end{array}\right|=5$. What is the determinant of $\left[\begin{array}{ccc}4 & 3 & 1 \\ 1 & 5 & 6 \\ 3 a & 3 b & 3 c\end{array}\right] ?$ (8 pts.)
9. Suppose A is a 3×3 matrix and $\operatorname{det}\left(A^{2}\right)=1$. Justify your answer to the following questions for full credit.
(a) True or False. A is invertible.
(b) True or False. The determinant of A is $\operatorname{det}(A)=1$.
(c) True or False. The columns of A span \mathbb{R}^{3}.
(d) True or False. There are infinitely many solutions to $A \mathbf{x}=\mathbf{b}$ for some choice of b in \mathbb{R}^{3}.
