Quiz 3

1. Write the vector $\mathbf{u}=\left[\begin{array}{r}0 \\ 3 \\ -2\end{array}\right]$ as a linear combination of the vectors $\mathbf{v}=\left[\begin{array}{l}4 \\ 1 \\ 0\end{array}\right], \mathbf{w}=\left[\begin{array}{r}2 \\ -4 \\ 3\end{array}\right]$.
(10 pts.)
2. Is the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly independent or linearly dependent (with $\mathbf{u}, \mathbf{v}, \mathbf{w}$ as above)? Clearly explain your answer for full credit.
3. Define the linear transformation T as follows.

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x-2 y+z \\
x+y-z
\end{array}\right]
$$

Compute $T(\mathbf{u}), T(\mathbf{v}), T(\mathbf{u}+\mathbf{v})$, and state the domain and codomain of T (with \mathbf{u}, \mathbf{v} as above).

