Worksheet 2, Math 1553

Sections from Lay 5th edition: 1.3, 1.4

1. Consider the following vectors:

$$\vec{u}_1 = \begin{bmatrix} 1\\-2\\0 \end{bmatrix}, \ \vec{u}_2 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \ \vec{u}_3 = \begin{bmatrix} 5\\-6\\8 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} 2\\-1\\6 \end{bmatrix}$$

Is \vec{b} in the span of $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$? Is \vec{b} a linear combination of vectors \vec{u}_1, \vec{u}_2 , and \vec{u}_3 ? Is the linear system with augmented matrix

$$A = \left[\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3 \ \vec{b} \right]$$
consistent?

2. Write vector
$$\begin{bmatrix} 6\\11\\6 \end{bmatrix}$$
 as a linear combination of the vectors $\vec{u} = \begin{bmatrix} 2\\1\\4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1\\-1\\3 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 3\\2\\5 \end{bmatrix}$.

- 3. Mark each statement as true or false, and justify your answers:
 - (a) A vector \vec{b} is a linear combination of the columns of a matrix A if and only if the equation $A\vec{x} = \vec{b}$ has at least one solution.
 - (b) The equation $A\vec{x} = \vec{b}$ is consistent if the augmented matrix $\begin{bmatrix} A \ \vec{b} \end{bmatrix}$ has a pivot position in every row.
 - (c) The first entry in the product $A\vec{x}$ is a sum of products.
 - (d) If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation $A\vec{x} = \vec{b}$ is consistent for each \vec{b} in \mathbb{R}^m .
 - (d) If A is an $m \times n$ matrix and if the equation $A\vec{x} = \vec{b}$ is inconsistent for some \vec{b} in \mathbb{R}^m , then A cannot have a pivot position in every row.
- 4. Describe the span of the vectors. If the span is a line or a plane, find the equation.

(a)
$$\vec{v}_1 = \begin{bmatrix} -1\\ 3\\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1\\ -1\\ -4 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1\\ 0\\ -5 \end{bmatrix}.$$

(b) $\vec{v}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -3\\ -6\\ -9 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} -1\\ -2\\ -3 \end{bmatrix}.$