Worksheet 2, Math 1553

Sections from Lay 5th edition: 1.3, 1.4

1. Consider the following vectors:

$$
\vec{u}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{r}
5 \\
-6 \\
8
\end{array}\right], \vec{b}=\left[\begin{array}{r}
2 \\
-1 \\
6
\end{array}\right] .
$$

Is \vec{b} in the span of $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$? Is \vec{b} a linear combination of vectors \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} ? Is the linear system with augmented matrix
$A=\left[\begin{array}{llll}\vec{u}_{1} & \vec{u}_{2} & \vec{u} & \vec{b}\end{array}\right]$ consistent?
2. Write vector $\left[\begin{array}{c}6 \\ 11 \\ 6\end{array}\right]$ as a linear combination of the vectors $\vec{u}=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$.
3. Mark each statement as true or false, and justify your answers:
(a) A vector \vec{b} is a linear combination of the columns of a matrix A if and only if the equation $A \vec{x}=\vec{b}$ has at least one solution.
(b) The equation $A \vec{x}=\vec{b}$ is consistent if the augmented matrix $[A \vec{b}]$ has a pivot position in every row.
(c) The first entry in the product $A \vec{x}$ is a sum of products.
(d) If the columns of an $m \times n$ matrix A span \mathbb{R}^{m}, then the equation $A \vec{x}=\vec{b}$ is consistent for each \vec{b} in \mathbb{R}^{m}.
(d) If A is an $m \times n$ matrix and if the equation $A \vec{x}=\vec{b}$ is inconsistent for some \vec{b} in \mathbb{R}^{m}, then A cannot have a pivot position in every row.
4. Describe the span of the vectors. If the span is a line or a plane, find the equation.
(a) $\vec{v}_{1}=\left[\begin{array}{r}-1 \\ 3 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}1 \\ -1 \\ -4\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}1 \\ 0 \\ -5\end{array}\right]$.
(b) $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}-3 \\ -6 \\ -9\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$.

