Worksheet 5, Math 1553

Sections from Lay 5^{th} edition: 2.1, 2.2

Exercises

1. Consider the matrices

$$A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & -5 \\ 3 & k \end{pmatrix}.$$

For what value(s) of *k*, if any, do matrices *A* and *B* commute?

- 2. Suppose the last column of the product *AB* is a column of zeros, but matrix *B* does not have a column of zeros. What can we say about the columns of matrix *A*?
- 3. If possible, compute the inverse of the matrix. For what values of *p* does the inverse exist?

$$\begin{pmatrix} 1 & 0 & -1 \\ -3 & 1 & 3 \\ 2 & -3 & p \end{pmatrix}$$

- 4. True or false. Justify your reasoning. If the statement is false, identify a counterexample.
 - (a) The transpose of any sum of matrices is always equal to the sum of their transposes.
 - (b) The transpose of any product of matrices is always equal to the product of their transposes.
 - (c) If A is a square matrix, then $(A^2)^T = (A^T)^2$.
 - (d) If *A* and *B* are matrices, and the product *AB* is equal to the zero matrix, then *A* and/or *B* must also be a zero matrix.
- 5. Consider *A* a 3×3 matrix, and $I = I_3$ the 3×3 identity matrix.
 - (a) Denote row *i* of the 3×3 identity matrix as row_{*i*}(*I*). What is row_{*i*}(*I*)*A*, for *i* = 1, 2, 3, equal to?
 - (b) If rows 1 and 2 of *A* are interchanged, the result can be expressed as *EA*, where *E* is an elementary matrix obtained by interchanging the rows 1 and 2 of *I*. What is *E*?
 - (c) If row 3 of *A* is multiplied by 5, state why the result can be expressed as *EA*, where E is formed by multiplying row 3 of *I* by 5.
 - (d) If row 3 of A is replaced by row₃(A) 4row₁(A), state why the result is EA, where E is formed from I by replacing row 3 of I by row₃(I) 4row₁(I).