Worksheet 6, Math 1553

Sections from Lay $5^{\text {th }}$ edition: 2.3, 2.5

Exercises

1. Answer the following short questions, justifying your answers. Note that all referenced matrices are $n \times n$ square.
(a) Matrix A has one column that is 7 times another column. Is A invertible?
(b) A is the standard matrix of a linear transform $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that is one-to-one. Is A invertible?
(c) A is not invertible. How many solutions are there to the equation $A \vec{x}=\overrightarrow{0}$?
(d) There are some vectors in \mathbb{R}^{n} that are not in the span of the columns of A. Is A invertible?
2. If possible, give an example of the following.
(a) A matrix that has an LU factorization where L is 3×3 and U is 3×2.
(b) A 3×3 matrix that is singular and has exactly two pivot columns.
(c) A matrix that is singular and has an LU decomposition.
(d) A matrix that is invertible and does not have an LU decomposition.
(e) A matrix that is singular and does not have an LU decomposition.
3. $A=\left(\begin{array}{lll}1 & -1 & 2 \\ 3 & -5 & 5\end{array}\right)$
(a) Compute the LU decomposition of A.
(b) Use your LU decomposition to solve $A \vec{x}=\vec{b}$, where $\vec{b}=\binom{2}{13}$
4. If possible, fill in the missing elements of the matrices below with numbers so that each of the matrices are invertible. If it is not possible to do so, state why.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & &
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
& & 1
\end{array}\right), \quad C=\left(\begin{array}{ccc}
1 & 1 & \\
1 & 1 & \\
1 & 1 & 1
\end{array}\right)
$$

