Worksheet 7, Math 1553

Sections from Lay $5^{\text {th }}$ edition: 2.8, 2.9, 3.1 and 3.2.

Exercises

1. Consider the matrix

$$
A=\left(\begin{array}{rrr}
0 & -1 & 2 \\
1 & 5 & -9 \\
4 & 1 & 2
\end{array}\right)
$$

(a) Construct bases for the column space of A and for the null space of A.
(b) What are the dimensions of $\operatorname{Col} A$ and $\operatorname{Null} A$?
(c) $\operatorname{Describe} \operatorname{Col} A$ and $\operatorname{Null} A$ geometrically.
(d) What is the rank of A ?
2. Indicate whether the statement true or false. If it is true, in one or two sentences, explain why. If false, give a counter example or explain why in one or two sentences.
(a) If M is a 3×5 matrix, and its columns span \mathbb{R}^{3}, then the null space is \mathbb{R}^{2}.
(b) It is not possible for the null space of an $m \times n$ matrix to be \mathbb{R}^{n}.
3. A 7×5 matrix A has rank 3. What is the dimension of the set of solutions to $A \vec{x}=\overrightarrow{0}$?
4. If possible, construct a 3×4 matrix A, in reduced echelon form, whose Column space and Null space both have dimension 2 .
5. Consider the vectors

$$
\vec{b}_{1}=\left(\begin{array}{r}
1 \\
5 \\
-3
\end{array}\right), \vec{b}_{2}=\left(\begin{array}{r}
-3 \\
-7 \\
5
\end{array}\right), \vec{x}=\left(\begin{array}{r}
4 \\
10 \\
-7
\end{array}\right)
$$

(a) Explain why the set $\beta=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ can be considered as a basis for a subspace H.
(b) Geometrically describe H.
(c) Is \vec{x} in H ? If so, give the coordinates of \vec{x} relative to the basis β.
6. Compute the determinant by cofactor expansions:

$$
\left|\begin{array}{rrrr}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -4 & -3 & 5 \\
2 & 0 & 3 & 5
\end{array}\right|
$$

7. Calculate the following determinants and compare to describe how row operations affect the determinant:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|, \quad\left|\begin{array}{ll}
c & d \\
a & b
\end{array}\right|, \quad\left|\begin{array}{rr}
a+k c & b+k d \\
c & d
\end{array}\right|, \quad\left|\begin{array}{rr}
a & b \\
k c & k d
\end{array}\right| .
$$

