Worksheet 8, Math 1553

Sections from Lay $5^{\text {th }}$ edition: 5.1 and 5.2

Exercises

1. (a) Determine whether \vec{u} and \vec{v} are eigenvectors of A. If so, what are their eigenvalues? Do not construct the characteristic polynomial of A.

$$
A=\left(\begin{array}{ccc}
-3 & -3 & 2 \\
6 & 4 & 0 \\
5 & 3 & 0
\end{array}\right), \quad \vec{u}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \quad \vec{v}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

(b) Is $\lambda=2$ an eigenvalue of B ? Do not compute the characteristic polynomial.

$$
B=\left(\begin{array}{ll}
3 & 2 \\
3 & 8
\end{array}\right)
$$

2. Construct a basis for the eigenspace of

$$
A=\left(\begin{array}{rr}
4 & -2 \\
-3 & 9
\end{array}\right)
$$

with eigenvalue 10.
3. Let \vec{u} and \vec{v} both be eigenvectors of 2×2 matrix A with real eigenvalues λ and μ, respectively, and $\lambda \neq \mu$.
(a) Explain why the set of vectors $e=\{\vec{u}, \vec{v}\}$ can serve as a basis for \mathbb{R}^{2}.
(b) If the coordinates of a vector \vec{x} in \mathbb{R}^{2} relative to the basis e are $\left(c_{1}, c_{2}\right)$, what are the coordinates of the vector $A \vec{x}$ relative to basis e ?
(c) If $\lambda=0$, what is the rank of A ?
4. Consider the matrix

$$
A=\left(\begin{array}{lll}
3 & 4 & 5 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Construct the characteristic equation for the eigenvalues of A, and then solve this equation, giving the eigenvalues and their multiplicities.

