Worksheet 8, Math 1553

Sections from Lay 5th edition: 5.1 and 5.2

Exercises

1. (a) Determine whether \vec{u} and \vec{v} are eigenvectors of A. If so, what are their eigenvalues? Do not construct the characteristic polynomial of A.

$$A = \begin{pmatrix} -3 & -3 & 2\\ 6 & 4 & 0\\ 5 & 3 & 0 \end{pmatrix}, \quad \vec{u} = \begin{pmatrix} -1\\ 1\\ 1 \\ 1 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 0\\ 0\\ 0 \\ 0 \end{pmatrix}$$

(b) Is $\lambda = 2$ an eigenvalue of *B*? Do not compute the characteristic polynomial.

$$B = \begin{pmatrix} 3 & 2\\ 3 & 8 \end{pmatrix}$$

2. Construct a basis for the eigenspace of

$$A = \begin{pmatrix} 4 & -2 \\ -3 & 9 \end{pmatrix}$$

with eigenvalue 10.

- 3. Let \vec{u} and \vec{v} both be eigenvectors of 2×2 matrix A with real eigenvalues λ and μ , respectively, and $\lambda \neq \mu$.
 - (a) Explain why the set of vectors $e = \{\vec{u}, \vec{v}\}$ can serve as a basis for \mathbb{R}^2 .
 - (b) If the coordinates of a vector \vec{x} in \mathbb{R}^2 relative to the basis e are (c_1, c_2) , what are the coordinates of the vector $A\vec{x}$ relative to basis e?
 - (c) If $\lambda = 0$, what is the rank of *A*?
- 4. Consider the matrix

$$A = \begin{pmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Construct the characteristic equation for the eigenvalues of *A*, and then solve this equation, giving the eigenvalues and their multiplicities.