Worksheet 9, Math 1553

Sections from Lay $5^{t h}$ edition: 5.3, 5.5

Exercises on 5.3

1. If possible, construct matrices P and D such that the matrix

$$
A=\left(\begin{array}{rr}
6 & 3 \\
-4 & -1
\end{array}\right)
$$

can be diagonalized as $A=P D P^{-1}$, where D is diagonal. You do not need to compute P^{-1}.
2. If possible, give an example of a square matrix, A, that has the following properties.
(a) A is 2×2, is in echelon form, invertible, and cannot be diagonalized.
(b) A is 2×2, is in echelon form, singular, and can be diagonalized.
(c) A is 3×3, is in echelon form, singular, and can be diagonalized.
3. Fill in the blanks to express the diagonalization of A and B :

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
5 & -2 & 3 \\
0 & 1 & 0 \\
6 & 7 & -2
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right]\left[\begin{array}{lll}
& 0 & 0 \\
0 & & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
-3 \\
0 & 6 \\
8
\end{array}\right]^{-1} . \\
B=\left[\begin{array}{rrr}
3 & -1 & 3 \\
1 & 1 & 3 \\
-1 & 1 & -1
\end{array}\right]=\left[\begin{array}{r}
-3 \\
0
\end{array}\right]\left[\begin{array}{lll}
& 0 & 0 \\
0 & 2 & 0 \\
0 & 0 &
\end{array}\right]\left[\begin{array}{rr}
-3 & \\
0 &
\end{array}\right]^{-1} .
\end{gathered}
$$

Exercises on 5.5

(I) Answer the following short questions. Justify your reasoning.
(a) If matrix A is 2×2 and is not invertible, can any of the eigenvalues of A have a non-zero imaginary component?
(b) If A is a real matrix with complex eigenvalue $\lambda=a+i b$ (where $b \neq 0$), can the eigenvector \vec{v} associated with λ be purely imaginary; that is, can $\vec{v}=i \vec{x}$, with \vec{x} in \mathbb{R}^{n} ?
(c) If 2×2 real matrix A has purely imaginary eigenvalues $i b$ and $-i b$ (and assume $b>0$), by what angle does the similar rotation/scaling matrix $C=P^{-1} A P$ rotate vectors, and by what factor does it scale them? Be sure to answer for both of the eigenvalues.
(II) Matrix A is a composition of a rotation and a scaling. Give the angle of rotation, ϕ, and the scale factor, r.

$$
A=\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right)
$$

(III) Let $A=\left(\begin{array}{cc}4 & -1 \\ 2 & 6\end{array}\right)$. Construct an invertible matrix P and a matrix C from the complex eigenvalues of A, such that $A=P C P^{-1}$.

