Worksheet 9, Math 1553

Sections from Lay 5^{th} edition: 5.3, 5.5

Exercises on 5.3

1. If possible, construct matrices *P* and *D* such that the matrix

$$A = \begin{pmatrix} 6 & 3 \\ -4 & -1 \end{pmatrix}$$

can be diagonalized as $A = PDP^{-1}$, where D is diagonal. You do not need to compute P^{-1} .

- 2. If possible, give an example of a square matrix, A, that has the following properties.
 - (a) $A ext{ is } 2 \times 2$, is in echelon form, invertible, and cannot be diagonalized.
 - (b) *A* is 2×2 , is in echelon form, singular, and can be diagonalized.
 - (c) $A ext{ is } 3 \times 3$, is in echelon form, singular, and can be diagonalized.
- 3. Fill in the blanks to express the diagonalization of *A* and *B*:

$$A = \begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}^{-1}.$$
$$B = \begin{bmatrix} 3 & -1 & 3 \\ 1 & 1 & 3 \\ -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}^{-1}.$$

Exercises on 5.5

- (I) Answer the following short questions. Justify your reasoning.
 - (a) If matrix A is 2×2 and is not invertible, can any of the eigenvalues of A have a non-zero imaginary component?
 - (b) If *A* is a real matrix with complex eigenvalue $\lambda = a + ib$ (where $b \neq 0$), can the eigenvector \vec{v} associated with λ be purely imaginary; that is, can $\vec{v} = i\vec{x}$, with \vec{x} in \mathbb{R}^n ?
 - (c) If 2×2 real matrix *A* has purely imaginary eigenvalues *ib* and -ib (and assume b > 0), by what angle does the similar rotation/scaling matrix $C = P^{-1}AP$ rotate vectors, and by what factor does it scale them? Be sure to answer for both of the eigenvalues.
- (II) Matrix *A* is a composition of a rotation and a scaling. Give the angle of rotation, ϕ , and the scale factor, *r*.

$$A = \begin{pmatrix} \sqrt{3} & -1\\ 1 & \sqrt{3} \end{pmatrix}$$

(III) Let $A = \begin{pmatrix} 4 & -1 \\ 2 & 6 \end{pmatrix}$. Construct an invertible matrix *P* and a matrix *C* from the complex eigenvalues of *A*, such that $A = PCP^{-1}$.