MATH 1553, SUMMER 2022

MIDTERM 1: THROUGH SECTION 2.5

Please read all instructions carefully before beginning.

- Write your name on the top of each page (not just the cover page!).
- You have 55 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- As always, RREF means "reduced row echelon form."
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- Please box your answer for each question. (if needed)
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!
a) Compute: $\left(\begin{array}{cc}2 & 1 \\ -3 & 2 \\ 0 & 1\end{array}\right)\binom{2}{-1}=2\left[\begin{array}{c}2 \\ -3 \\ 0\end{array}\right]-\left[\begin{array}{c}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}3 \\ -8 \\ -1\end{array}\right]$

The remaining problems are True or false. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to justify your answer.
b) T F The matrix $\left(\begin{array}{lllll}d \\ 0 & (1) & 1^{d} & 0 & 2 \\ 0 & 0 & 0 & (1) & 2\end{array}\right)$ free vars
c) $\mathbf{T} \mathbf{F}$ The vector equation $x_{1}\binom{2}{-3}+x_{2}\binom{-3}{2}=\binom{4}{4}$ is consistent.

$$
-4\left[\begin{array}{c}
2 \\
-3
\end{array}\right]-4\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

d) $\quad \mathrm{T}$
(F)

If A is an $m \times n$ matrix with $m>n$ and the system $A x=0$ has a unique solution, then $A x=b$ is consistent for every b in \mathbf{R}^{m}.

$$
\text { eng. } A=\left[\begin{array}{l}
10 \\
0 \\
0
\end{array}\right] \text { and } b=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

e) \mathbf{T} Suppose A is an 4×3 matrix whose first column is the sum of its second and third columns. Then the equation $A x=0$ has infinitely many solutions.

$$
\begin{gathered}
A=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right] \xi_{1} v_{1}=v_{2}+v_{3} \\
\\
\Rightarrow v_{1}-v_{2}-v_{3}=0
\end{gathered}
$$

$$
\begin{aligned}
x=s\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right] & \text { are all solve } \\
& \text { to } A x=0
\end{aligned}
$$

a) Are there three nonzero vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{3} so that $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ is a plane but v_{3} is not in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$? If your answer is yes, write such vectors v_{1}, v_{2}, v_{3} and label each vector clearly.
yes

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$$
v_{2}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

$$
v_{3}=\left[\begin{array}{l}
0 \\
0 \\
i
\end{array}\right]
$$

b) Write a matrix A with the property that the equation $A x=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is consistent.

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 2
\end{array}\right]
$$

c) Write a vector equation which represents an inconsistent system of two linear equations in the variables x_{1}, x_{2}, x_{3}.

$$
x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right)+x_{2}\left[\begin{array}{l}
3 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

d) For some 2×2 matrix A and vector b in \mathbf{R}^{2}, the solution set of $A x=b$ is drawn below. Draw the solution set of $A x=0$.

Short answer. You do not need to show your work or justify your answers.
a) Suppose we are given a consistent linear system of 3 equations in 4 variables, and suppose that the augmented matrix corresponding to the system has 3 pivots. Then the solution set to the system is a:

b) Consider the following vectors:

Problem 4.

Please organize your work below and put a box around your answer for each part.
a) Find the parametric form of the general solution of the following system of equations. Clearly indicate which variables (if any) are free variables.

$$
\begin{array}{rr}
x_{1}-3 x_{2}+2 x_{3}-4 x_{4}= & -2 \\
-x_{1}+3 x_{2}+2 x_{3}-4 x_{4}= & 6 \\
-x_{1}+3 x_{2}-x_{3}+2 x_{4}= & 3
\end{array}
$$

b) Write the set of solutions to

$$
\begin{array}{r}
x_{1}-3 x_{2}+2 x_{3}-4 x_{4}=0 \\
-x_{1}+3 x_{2}+2 x_{3}-4 x_{4}=0 \\
-x_{1}+3 x_{2}-x_{3}+2 x_{4}=0
\end{array}
$$

in parametric vector form.
c) Write one specific non-zero vector that solves each system of equations (one vector for the system (a) and another vector for (b)). Clearly show your work.

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & -3 & 2 & -4 & -2 \\
-1 & 3 & 2 & -4 & 6 \\
-1 & 3 & -1 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & -3 & 2 & -4 & -2 \\
0 & 0 & 4 & -8 & 4 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]} \\
& x_{1}=-4+3 s \\
& x_{2}=s \\
& x_{3}=1+2 t \\
& x_{4}=t \\
& {\left[\begin{array}{c}
-4 \\
1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]\left[\begin{array}{ll}
1 \\
0 & 0 \\
0 & 0
\end{array}\right.} \\
& {\left[\begin{array}{rrrr|r}
1 & -3 & 2 & -4 & -2 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc|c}
1 & -y^{5} & 0 & 0^{t} & -4 \\
0 & 0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \text { (c) } \\
& x=s\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right] \\
& \begin{array}{l}
x=\left[\begin{array}{c}
-4 \\
0 \\
0 \\
0
\end{array}\right] \text { for }(G) \\
x=\left[\begin{array}{l}
3 \\
1 \\
1 \\
1
\end{array}\right] \text { for }(G)
\end{array}
\end{aligned}
$$

Problem 5.

Parts (a) and (b) are unrelated.
a) Caroll Spinney cannot stop thinking about the system of equations

$$
\begin{gathered}
x-2 y=h \\
3 x+k y=2
\end{gathered}
$$

where h and k are real numbers.
For what values of h and k (if any) is the system inconsistent?

$$
\left[\begin{array}{cc|c}
1 & -2 & h \\
3 & k & 2
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & -2 & h \\
0 & k+6 & 2-3 h
\end{array}\right]
$$

b) Let $v_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 2 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{c}2 \\ 1 \\ -1 \\ 0\end{array}\right)$, and $v_{3}=\left(\begin{array}{l}6 \\ 4 \\ 0 \\ 4\end{array}\right)$.

Is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly independent? If your answer is yes, justify why. If your answer is no, give a linear dependence relation for v_{1}, v_{2}, and v_{3}.

Parts (a) and (b) are unrelated.
a) Write an augmented matrix in RREF representing a system of three equations in two unknowns, whose solution set is the line $y=3 x$ in \mathbf{R}^{2}.
a vector in the line $y=3 x$ is $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
Need $A *\left(\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right) \leftarrow\left(\begin{array}{ccc}b & \text { in } & \mathbb{R}^{2} \\ 3 \text { egns }\end{array}\right)$
$A=\left[\begin{array}{ll}-3 & 1 \\ -3 & 1 \\ -3 & 1\end{array}\right]$
So
b) Let $A=\left(\begin{array}{cc}3 & -2 \\ -6 & 4\end{array}\right)$. Draw the span of the columns of A below.

