MATH 1553, SUMMER 2022 MIDTERM 1: THROUGH SECTION 2.5

Name	KOU	GTID

Please **read all instructions** carefully before beginning.

- Write your name on the top of each page (not just the cover page!).
- You have 55 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- As always, RREF means "reduced row echelon form."
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- Please box your answer for each question. (if needed)
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Problem 1.

[Parts (a) through (e) are worth 2 points each]

a) Compute:
$$\begin{pmatrix} 2 & 1 \\ -3 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -8 \\ -1 \end{pmatrix}$$

The remaining problems are True or false. Circle T if the statement is always true, and circle F otherwise. You do not need to justify your answer.
b) **T F** The matrix $\begin{pmatrix} 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$ is in reduced row echelon form.
c) **T F** The vector equation $x_1\begin{pmatrix} 2 \\ -3 \end{pmatrix} + x_2\begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ is consistent.
 $-4 \begin{pmatrix} 2 \\ -3 \end{pmatrix} - 4 \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 4 \end{pmatrix}$
d) **T F** If A is an $m \times n$ matrix with $m > n$ and the system $Ax = 0$ has a unique solution, then $Ax = b$ is consistent for every b in R^m.
 $\ell \cdot q$, $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 9 \\ 0 \\ 0 \end{pmatrix}$
e) **T F** Suppose A is an 4×3 matrix whose first column is the sum of its second and third columns. Then the equation $Ax = 0$ has infinitely many solutions.
 $A = \begin{pmatrix} v_1 & v_2 & v_2 \end{pmatrix} \notin V_1 = V_2 + V_2$
 $\Rightarrow V_1 - V_2 - V_2 = 0$
 $\Rightarrow Y_1 = S \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ are call Solves $A = 0$

a) Are there three nonzero vectors v_1 , v_2 , v_3 in \mathbf{R}^3 so that $\text{Span}\{v_1, v_2, v_3\}$ is a plane but v_3 is not in $\text{Span}\{v_1, v_2\}$? If your answer is yes, write such vectors v_1 , v_2 , v_3 and label each vector clearly.

Use
$$V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad V_2 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \quad V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

b) Write a matrix *A* with the property that the equation $Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is consistent.

A	0	07	
A=	0	0	
1	LI	Ζ.)

c) Write a vector equation which represents an inconsistent system of two linear equations in the variables x_1, x_2, x_3 .

$$\chi_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \chi_2 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \chi_2 \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

d) For some 2×2 matrix *A* and vector *b* in \mathbb{R}^2 , the solution set of Ax = b is drawn below. Draw the solution set of Ax = 0.

Please organize your work below and put a box around your answer for each part.

a) Find the parametric form of the general solution of the following system of equations. Clearly indicate which variables (if any) are free variables.

 $x_1 - 3x_2 + 2x_3 - 4x_4 = -2$ -x₁ + 3x₂ + 2x₃ - 4x₄ = 6 -x₁ + 3x₂ - x₃ + 2x₄ = 3

b) Write the set of solutions to

$$x_1 - 3x_2 + 2x_3 - 4x_4 = 0$$

-x₁ + 3x₂ + 2x₃ - 4x₄ = 0
-x₁ + 3x₂ - x₃ + 2x₄ = 0

in parametric vector form.

c) Write *one* specific non-zero vector that solves each system of equations (one vector for the system (a) and another vector for (b)). *Clearly show your work.*

$$\begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ -1 & 3 & 2 & -4 & | & 6 \\ -1 & 3 & -1 & 2 & 3 \end{bmatrix}^{n} \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 4 & -8 & | & 4 \\ 0 & 0 & 1 & -2 & | & 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 5 & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & \begin{bmatrix} 1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \gamma & [1 & -3 & 2 & -4 & | & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \chi_{1} = -4 + 3s & \chi_{2} & \chi_{1} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{1} & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = -4 & \chi_{2} \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\ \chi_{2} = 1 \end{bmatrix}$$

$$\begin{array}{c} \chi_{2} = 1 \\$$

Parts (a) and (b) are unrelated.

a) Write an augmented matrix in RREF representing a system of three equations in two unknowns, whose solution set is the line y = 3x in \mathbb{R}^2 .

[Scratch work]

教学 私 は 日 える シレ E 本語を書きます。 B 本 て" 語を分 7" J. か ります

