MATH 1553, SUMMER 2022

MIDTERM 2: THROUGH SECTION 3.6

Please read all instructions carefully before beginning.

- Write your name on the top of each page (not just the cover page!).
- You have 55 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- As always, RREF means "reduced row echelon form."
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- Please box your answer for each question when needed.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Parts (a)-(e) are True or false. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to justify your answer.
a) \mathbf{T} The transformation $T\binom{x}{y}=\left(\begin{array}{c}x-y \\ y-x \\ 0\end{array}\right)$ is one-to-one.

$$
A=\left[\begin{array}{ll}
T\left(e_{1}\right) & T\left(e_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1 \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

not pivot
is even
column
b) (1) $\mathbf{F} \quad V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbb{R}^{3} \mid x+y=z\right\}$ is a subspace of \mathbb{R}^{3}.

$$
V=\operatorname{Nul}\left(\left[\begin{array}{lll}
1 & 1 & -1
\end{array}\right]\right)
$$

c) F

If A is a 3×6 matrix and B is a 6×4 matrix, then the transformotion $T(x)=A B x$ has domain \mathbb{R}^{4} and codomain \mathbb{R}^{3}.

$$
A^{3 \times 6} \mathrm{~A}^{6 \times 4} \text { is } 3 \times 4
$$

$$
\overbrace{\tau \text { is }}^{\text {en the transfer- }} \text { is } \mathbb{R}^{\text {n }} \text { is } \mathbb{R}^{4}
$$

d) T F Suppose A is an 4×4 matrix with $\operatorname{dim}(\operatorname{Nul} A)=2$. Then the matrix A is not invertible.
to be invertible rank en) innit be 4.
e) $\begin{array}{r}\mathrm{F} \text { Given that the RREF of } A=\left(\begin{array}{lll}1 & 3 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \\ 1 & 3 & 3\end{array}\right) \\ \text { a basis for } \operatorname{Col}(A) \text { is }\left\{\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right)\right\} .\end{array}$ a basis for $\operatorname{Col}(A)$ is $\left\{\begin{array}{l}\left\{\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right)\right\} . \\ \uparrow \uparrow \\ \text { two linearly mdeperdent }\end{array}\right.$ vectors in cal A.

Problem 2.

[Parts (a),(b) are 2pt each. Part (c) is 6pt.]
a) Suppose A is a 6×4 matrix, and the dimension of $\operatorname{Nul}(A)$ is equal to 3 . Then the range of the transformation $T(x)=A x$ is a:
(circle one answer) point line plane 3 -space
(circle one answer) $\quad \mathbf{R} \quad \mathbf{R}^{2} \quad \mathbf{R}^{4} \quad \mathbf{R}^{6}$.

b) Consider the subspace $W=\left\{\left(\begin{array}{l}a \\ b \\ c \\ d \\ e\end{array}\right)\right.$ in $\left.\mathbb{R}^{5} \mid a=b=0\right\}$. The dimension of W
e de e $\begin{gathered}\text { range of } T=\end{gathered}$
is equal to 3 .

$$
W=N u l\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

c) Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)$. Clearly draw a non-zero vector b which is in $\operatorname{Col}(A)$ but is not a column of A, and draw $\operatorname{Nul}(A)$. Briefly show work.

Draw b in $\operatorname{Col}(A)$ here. Draw $\operatorname{Nul}(A)$ here.

$$
-\binom{1}{2}+0\left[\begin{array}{l}
3 \\
6
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2
\end{array}\right)
$$

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{r}
-3 \\
1
\end{array}\right)=\binom{0}{0}
$$

Problem 3.

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the transformation $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{x}{y-z}$, and let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the matrix which reflects vectors in \mathbb{R}^{2} about the line $y=x$.
a) Write the standard matrix A for T.

$$
B=\left[T\left(e_{1}\right) T\left(e_{2}\right)\right]=\xrightarrow{\text { b) Writ the standard matrix } \left.B \text { for } U . \xrightarrow{0} \begin{array}{ll}
\longrightarrow & 1 \\
1 & 0
\end{array}\right]}
$$

c) Is T one-to-one?
d) Is U onto?

e) Circle the composition that makes sense:

$$
\mathbb{R}^{\mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \xrightarrow{u} \mathbb{R}^{U} \mathbb{R}^{2} \text { gold first }}
$$

f) Write the standard matrix for the composition you chose in part (e).

$$
B \cdot A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right)=\sqrt{\left[\begin{array}{lll}
0 & 1 & -1 \\
1 & 0 & 0
\end{array}\right]}
$$

Problem 4.

Frank Oz has put the matrix A below into its reduced row echelon form:

$$
A=\left(\begin{array}{cccc}
1 & -3 & 0 & 2 \\
-3 & 9 & 1 & -1 \\
2 & -6 & 0 & 4
\end{array}\right) \stackrel{\operatorname{RREF}}{\leadsto}\left(\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

a) Find a basis \mathcal{B} for $\operatorname{Nul}(A)$. Please box your answer.
b) Is $x=\left(\begin{array}{c}8 \\ 2 \\ 5 \\ -1\end{array}\right)$ in $\operatorname{Nul}(A)$?

c) If you answered yes to part (b), write x as a linear combination of the vectors you found in part (a), otherwise justify why x is not in $\operatorname{Nul}(A)$.
(a)
(b) $\left[\begin{array}{cccc}1 & -3 & 0 & 2 \\ -3 & 9 & 1 & -1 \\ 2 & -6 & 0 & 4\end{array}\right]\left[\begin{array}{c}8 \\ 2 \\ 5 \\ -1\end{array}\right]=\left[\begin{array}{c}8-6-2 \\ -24+18+5-1 \\ 16-12-4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
(c)

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
3 & -2 & 8 \\
1 & 0 & 2 \\
0 & -5 & 5 \\
-1
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& \qquad\left[\begin{array}{c}
8 \\
2 \\
5
\end{array}\right]=2\left[\begin{array}{c}
3 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{c}
-2 \\
0 \\
-5 \\
1
\end{array}\right]
\end{aligned}
$$

Parts (a) and (b) are unrelated.
a) Suppose that a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $T\binom{1}{1}=\binom{-1}{1}$ and $T\binom{-1}{2}=\binom{2}{3}$. Find $T\binom{5}{2}$.

$$
\begin{aligned}
& \binom{5}{2}=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \text { So }\left[\begin{array}{cc|c}
1 & -1 & 5 \\
1 & 2 & 2
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -1 & 5 \\
0 & 3 & -3
\end{array}\right] \\
& c_{1}=4, c_{2}=-1 \\
& T\left(\left(\begin{array}{l}
5 \\
2
\end{array}\right]\right)=T\left(4\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\binom{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) Find the inverse of the matrix } A \text { below. For full credit, check your answer using }
\end{aligned}
$$ the definition of inverse.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
3 & -2 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A * A^{-1}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
3 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
-3 & 5 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

[Scratch work]

