
Linear Algebra Lecture Notes
For MATH 1554 at the Georgia Institute of Technology

Greg Mayer

Version 0.4, Compiled April 23, 2021

Preface

These lecture notes are intended for use in a Georgia Tech undergraduate level
linear algebra course, MATH 1554. In this first edition of the notes, the focus is
on some of the topics not already covered in the Interactive Linear Algebra text.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/4.0/.

The document was created using LaTeX and was last compiled on April 23, 2021.

The cover image was obtained from pixabay.com in April 2021 under the Pixabay
License.

ii

Contents

Preface ii

1 Applications of Matrix Algebra 1

1.1 Block Matrices . 1

1.2 The LU Factorization . 9

1.3 The Leontif Input-Output Model . 17

1.4 2D Computer Graphics . 23

1.5 3D Computer Graphics . 33

2 Symmetric Matrices and the SVD 40

2.1 Orthogonal Diagonalization . 40

2.2 Quadratic Forms . 47

2.3 Quadratic Surfaces . 54

2.4 Constrained Optimization . 61

2.5 Singular Values . 69

2.6 The SVD . 75

2.7 Applications of The SVD . 85

iii

Section 0.0

3 Appendices 92

3.1 Symmetric Matrices Have Real Eigenvalues 92

3.2 The Spectral Decomposition of a Symmetric Matrix 94

Page iv

Chapter 1

Applications of Matrix Algebra

1.1 Block Matrices
A block matrix is a matrix that is interpreted as having been broken into sections
called blocks, or submatrices. Intuitively, a block matrix can be interpreted as
the original matrix that is partitioned into a collection of smaller matrices. For
example, the matrix

A =

0

BBB@

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

0 0 2 2 2

1

CCCA

can also be written as a 2⇥ 2 partitioned (or block) matrix:

A =

A1,1 A1,2

A2,1 A2,2

!

where the entries of A are the blocks

A1,1 =

0

B@
1 1

1 1

1 1

1

CA , A1,2 =

0

B@
1 0 0

0 1 0

0 0 1

1

CA , A2,1 =
⇣
0 0

⌘
, A2,2 =

⇣
2 2 2

⌘

We partitioned our matrix into four blocks, each of which have different dimen-
sions. But the matrix could also, for example, be partitioned into five 4⇥1 blocks,

1

Section 1.1

or four 1 ⇥ 5 blocks. Indeed, matrices can be partitioned into blocks in many
different ways, and depending on the application at hand, there can be a parti-
tioning that is useful or needed.

For example, when solving a linear system A~x = ~b to determine ~x, we can con-
struct and row reduce an augmented matrix of the form

X =
⇣
A ~b

⌘

The augmented matrix X consists of two sub-matrices, A and ~b, meaning that it
can be viewed as a block matrix. Another application of a block matrix arises
when using the SVD, which is a popular tool used in data science. The SVD uses
a matrix, ⌃, of the form

⌃ =

D 0

0 0

!

Matrix D is a diagonal matrix, and each 0 is a zero matrix. Representing ⌃ in
terms of sub-matrices helps us see what the structure of ⌃ is. Another block
matrix arises when introducing a procedure for computing the inverse of an n⇥n

matrix. To compute the inverse of matrix A, we construct and row reduce the
matrix

X =
⇣
A I

⌘

This is an example of a block matrix used in an algorithm. In order to use block
matrices in other applications we need to define matrix addition and multiplica-
tion with partitioned matrices.

1.1.1 Block Matrix Addition

If m⇥n matrices A and B are partitioned in exactly the same way, then the entries
of their sum is the sum of their blocks. For example, if A and B are the block
matrices

A =

A1,1 A1,2

A2,1 A2,2

!
, B =

B1,1 B1,2

B2,1 B2,2

!

then their sum is the matrix

A+B =

A1,1 +B1,1 A1,2 +B1,2

A2,1 +B2,1 A2,2 +B2,2

!

Page 2

Section 1.1

As long as A and B are partitioned in the same way the addition is calculated
block by block.

1.1.2 Block Matrix Multiplication

Recall the row column method for matrix multiplication.

Let A be m⇥ n and B be n⇥ p matrix. Then, the (i, j) entry of AB is

rowi A · colj B.

This is the Row Column Method for matrix multiplication.

Theorem

Partitioned matrices can be multiplied using this method, as if each block were
a scalar provided each block has appropriate dimensions so that products are
defined.

1.1.3 Example 1: Computing A2

Block matrices can be useful in cases where a matrix has a particular structure.
For example, suppose A is the n⇥ n block matrix

A =

X 0

0 Y

!

where X and Y are p⇥ p matrices, 0 is a p⇥ p zero matrix, and 2p = n. Then

A2 = AA =

X 0

0 Y

!
X 0

0 Y

!
=

X2 0

0 Y 2

!

Computation of A2 only requires computing X2 and Y 2. Taking advantage of the
block structure A leads to a more efficient computation than it otherwise would
have been with a naive row-column method that does not take advantage of the
structure of the matrix.

Page 3

Section 1.1

1.1.4 Example 2: Computing AB

A and B are the matrices

A =

1 0 1

0 1 1

!
=
⇣
A11 A12

⌘

B =

0

B@
2 �1

0 �1

0 1

1

CA =

B11

B21

!

where

A11 =

1 0

0 1

!
, A12 =

1

1

!
, B11 =

2 �1

0 �1

!
, B21 =

⇣
0 1

⌘

If we compute the matrix product using the given partitioning we obtain

AB =
⇣
A11 A12

⌘ B11

B21

!
=
⇣
A11B11 + A12B21

⌘

where

A11B11 =

1 0

0 1

!
2 �1

0 �1

!
=

2 �1

0 �1

!

A12B21 =

1

1

!⇣
0 1

⌘
=

0 1

0 1

!

Therefore

AB = A11B11 + A12B21 =

2 �1

0 �1

!
+

0 1

0 1

!
=

2 0

0 0

!

Computing AB with the row column method confirms our result.

AB =

1 0 1

0 1 1

!0

B@
2 �1

0 �1

0 1

1

CA =

2 + 0 + 0 �1 + 0 + 1

0 + 0 + 0 0� 1 + 1

!
=

2 0

0 0

!

Page 4

Section 1.1

1.1.5 Block Matrix Inversion

In some cases, matrix partitioning can be used to give us convenient expressions
for the inverse of a matrix. Recall that the inverse of n⇥ n matrix A is a matrix B,
that has the same dimensions as A and satisfies

AB = BA = I

where I is the n ⇥ n identity matrix. As we will see in the next example, we can
use this equation to construct expressions for the inverse of a matrix.

1.1.6 Example 3: Expression for Inverse of a Block Matrix

Recall, using our formula for a 2⇥ 2 matrix,

a b

0 c

!�1

=
1

ac

c �b

0 a

!
=

1/a �b/(ac)

0 1/c

!
(1.1)

provided that ac 6= 0. Suppose A, B, and C are invertible n⇥n matrices. Suppose
we wish to construct an expression for the inverse of the matrix

P =

A B

0 C

!

To construct the inverse of P , we can write

PP�1 = P�1P = In

where P�1 is the matrix we seek. If we let P�1 be the block matrix

P�1 =

W X

Y Z

!

Page 5

Section 1.1

we can determine P�1 by solving PP�1 = I or P�1P = I . Solving PP�1 = I

gives us:

In = PP�1

I 0

0 I

!
=

A B

0 C

!
W X

Y Z

!

I 0

0 I

!
=

AW +BY AX +BZ

CY CZ

!

The above matrix equation gives us a set of four equations that can be solved to
determine W , X , Y , and Z. The block in the second row and first column gives us
CY = 0. It was given that C is an invertible matrix, so Y is a zero matrix because

CY = 0

C�1CY = C�10

IY = 0

Y = 0

Likewise the block in the second row and second column yields CZ = I , so

CZ = I

C�1CZ = C�1I

Z = C�1

Now that we have expressions for Y and Z we can solve the remaining two equa-
tions for W and X . Solving for X gives us the following expression.

AX +BZ = 0

AX +BC�1 = 0

AX = �BC�1

A�1AX = �A�1BC�1

X = �A�1BC�1

Page 6

Section 1.1

Solving for W :

AW +BY = I

AW +B0 = I

A�1AW = A�1I

W = A�1

We now have our expression for P�1:

P�1 =

W X

Y Z

!
=

A�1 �A�1BC�1

0 C�1

!

Note that in the special case where n = 2 that each of the blocks are scalars and
our expression is equivalent to Equation (1.1).

1.1.7 Summary

In this section we used partitioned matrices to solve problems regarding matrix
invertibility and matrix multiplication. Partitioned matrices can be multiplied
using this method, as if each block were a scalar provided each block has appro-
priate dimensions so that products are defined. They can be used for example
when dealing with large matrices that have a known structure where it is more
convenient to describe the structure of a matrix in terms of its blocks. Although
not part of this text, matrix partitioning can be used to help derive new algorithms
because they give a more concise representation of a matrix and of operations on
matrices.

1.1.8 Exercises

1. Suppose A =
⇣
Y X

⌘ X 0

Y Z

!
X

Y

!
. Which of the following could A be

equal to?

(a) A = Y X2 +XYX +XZY

(b) A = 2X +XZY

Page 7

Section 1.1

(c) A = Y X2 +X + Z

2. A, B, and C are n ⇥ n invertible matrices. Construct expressions for X and
Y in terms of A, B, and C.

0 X 0

A 0 Y

!0

B@
B 0

0 A

A 0

1

CA =

0 B

A 0

!

3. Suppose A,B and C are invertible n⇥ n matrices, and

P =

A 0

B C

!

Give an expression for P�1 in terms of A, B, and C.

Page 8

Section 1.2

1.2 The LU Factorization
To solve a linear system of the form A~x = ~b we could use row reduction or, in
theory, calculate A�1 and use it to determine ~x with the equation

~x = A�1~b

But computing A�1 requires the computation of the inverse of an n ⇥ n matrix,
which is especially difficult for large n. It is more practical to solve A~x = ~b with
row reductions (i.e. - Gaussian Elimination). But it turns out that there are more
efficient methods, especially when n is large.

One method for solving linear systems that relies on what is referred to as a ma-
trix factorizations. A matrix factorization, or matrix decomposition is a factor-
ization of a matrix into a product of matrices. Factorizations can be useful for
solving A~x = ~b, or for understanding the properties of a matrix.

In this section, we factor a matrix into lower and into upper triangular matrices
to construct what is known as the LU factorization that is used to solve linear
systems in a systematic and efficient method. Before we introduce the LU factor-
ization, we will first need to introduce lower and upper triangular matrices.

1.2.1 Triangular Matrices

Before we introduce the LU factorization, we need to first define upper and lower
triangular matrices.

Suppose that the entries of m ⇥ n matrix A are ai,j . Then A is upper

triangular if ai,j = 0 for i > j. Matrix A is lower triangular if ai,j = 0 for
i < j.

Upper and Lower Triangular Matrices

As an example, all of the matrices below are in upper triangular form.

Page 9

Section 1.2

1 5 0

0 2 4

!
,

0

BBB@

1 0 0 1

0 2 1 0

0 0 0 0

0 0 0 1

1

CCCA
,

0

BBB@

2 1

0 1

0 0

0 0

1

CCCA
,

0 0 0

0 0 0

!

Notice how all of the entries below the main diagonal are zero, and the entries
on and above the main diagonal can be anything. Likewise, examples of lower
triangular matrices are below.

1 0 0

3 2 0

!
,

0

BBB@

3 0 0 0

1 1 0 0

0 0 0 0

0 2 0 1

1

CCCA
,

0

BBB@

1 0

1 4

0 1

2 0

1

CCCA
,

0 0 0

0 0 0

!

Again, note that our definition for an upper triangular matrix does not specify
what the entries on or above the main diagonal need to be. Some or all of the
entries above the main diagonal can, for example, be zero. Likewise the entries
on and below the main diagonal of a lower triangular matrix do not have to have
specific values.

1.2.2 The LU Factorization

After stating a theorem that gives the LU decomposition, we will give an algo-
rithm for constructing the LU factorization. We will then see how we can use the
factorization to solve a linear system.

If A is an m ⇥ n matrix that can be row reduced to echelon form without
row exchanges, then A = LU , where L is a lower triangular m⇥m matrix
with 1’s on the diagonal, and U is an echelon form of A.

Theorem: The LU Factorization

Page 10

Section 1.2

Proof

To prove the theorem above we will first show that we can write A = LU where
L is an invertible matrix, and U is an echelon form of A.

Suppose that m⇥n matrix A can be reduced to echelon form U with p elementary
row operations that only add a multiple of a row to another row that is below it.
Then each row operation can be performed by multiplying A with p elementary
matrices.

EpEp�1 · · ·E3E2E1A = U (1.2)

If we let L�1 = EpEp�1 · · ·E3E2E1, then

L�1A = U (1.3)

Note that L�1 = EpEp�1 · · ·E3E2E1 is invertible because elementary matrices are
invertible. Therefore L�1 can be reduced to the identity with a sequence of row
operations. Moreover, if we multiply Equation (1.3) by L we obtain:

LL�1A = LU) A = LU

Therefore A has the decomposition A = LU where U is an echelon form of A and
L is an invertible m ⇥ m matrix. To show that L is lower triangular, recall from
equations (1.2) and (1.3) that

L�1 = EpEp�1 · · ·E3E2E1

Each elementary matrix Ei is lower triangular because to reduce A to U we only
used one type of row operation: adding a multiple of a row to a row below it,
so each Ei is a lower triangular matrix. It can also be shown that the product of
two lower-triangular matrices is a lower triangular matrix, and the inverse of a
lower triangular matrix is lower triangular. This implies that both L�1 and L will
be lower-triangular. ⌅

1.2.3 Constructing the LU Factorization

To construct the LU factorization of a matrix we must first apply a sequence of
row operations to A in order to reduce A to U . Equation (1.3) gives us that

EpEp�1 · · ·E3E2E1A = L�1A = U, where L�1 = EpEp�1 · · ·E3E2E1

Page 11

Section 1.2

But if L�1L = I , then then the sequence of row operations that reduce A to U will
reduce L to I . This gives us an algorithm for constructing the LU factorization.

Suppose A is an m ⇥ n matrix that can be row reduced to echelon form
without row exchanges. To construct the LU factorization:

1. reduce A to an echelon form U by a sequence of row replacement
operations, if possible

2. place entries in L such that the sequence of row operations that re-
duces A to U will reduce L to I

Algorithm: Constructing the LU Factorization of a Matrix

Note that the above procedure will work for any m⇥n matrix that can be reduced
to echelon form without row exchanges. Meaning that we do not need A to be
square or invertible to construct its LU factorization.

1.2.4 Example 1: LU of a 3⇥ 2 Matrix

In this example we construct LU factorizations of the following matrix.

A =

0

B@
1 3

2 10

0 12

1

CA

Because A is a 3⇥ 2 matrix, the LU factorization has the form

A = LU =

0

B@
1 0 0

⇤ 1 0

⇤ ⇤ 1

1

CA

0

B@
⇤ ⇤
0 ⇤
0 0

1

CA (1.4)

Each ⇤ represents an entry that we need to compute the value of. To reduce A to
U we apply a sequence of row replacement operations as shown below.

A =

0

B@
1 3

2 10

0 12

1

CA s

0

B@
1 3

0 4

0 12

1

CA s

0

B@
1 3

0 4

0 0

1

CA = U

Page 12

Section 1.2

Matrix U is the echelon form of A that we need for the LU factorization. We next
construct L so that the row operations that reduced A to U will reduce L to I . Our
row operations were:

R2 � 2R1 ! R2 and R3 � 3R2 ! R3

With these two row operations, we see that L must be the matrix:

L =

0

B@
1 0 0

2 1 0

0 3 1

1

CA

Note that the row operations R2�2R1 ! R2 and R3�3R2 ! R3 applied to L will
give us the identity. The LU factorization of A is

A =

0

B@
1 0 0

2 1 0

0 3 1

1

CA

0

B@
1 3

0 4

0 0

1

CA

1.2.5 Solving Linear Systems with the LU Factorization

Our motivation for introducing the LU factorization was to introduce an efficient
method for solving linear systems. Given rectangular matrix A and vector ~b, we
wish to use the LU factorization of A to solve A~x = ~b for ~x. A procedure for doing
so is below.

To solve A~x = ~b for ~x:
1. Construct the LU decomposition of A to obtain L and U .

2. Set U~x = ~y. Forward solve for ~y in L~y = ~b.

3. Backwards solve for ~x in U~x = ~y.

Algorithm

Page 13

Section 1.2

1.2.6 Example 2: Solving a Linear System With LU

In this example we will solve the linear system A~x = ~b given the LU decomposi-
tion of A.

A = LU =

0

BBB@

1 0 0 0

1 1 0 0

0 2 1 0

0 0 3 1

1

CCCA

0

BBB@

1 4 1

0 1 1

0 0 2

0 0 0

1

CCCA
, ~b =

0

BBB@

2

3

2

0

1

CCCA

We first set U~x = ~y and solve L~y = ~b. Reducing the augmented matrix (L |~b)
gives us:
0

BBB@

1 0 0 0 2

1 1 0 0 3

0 2 1 0 2

0 0 3 1 0

1

CCCA
s

0

BBB@

1 0 0 0 2

0 1 0 0 1

0 2 1 0 2

0 0 3 1 0

1

CCCA
s

0

BBB@

1 0 0 0 2

0 1 0 0 1

0 0 1 0 0

0 0 3 1 0

1

CCCA
s

0

BBB@

1 0 0 0 2

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

1

CCCA

Therefore, ~y is the vector

~y =

0

BBB@

2

1

0

0

1

CCCA
.

We now solve U~x = ~y.
0

BBB@

1 4 1 2

0 1 1 1

0 0 2 0

0 0 0 0

1

CCCA
s

0

BBB@

1 4 0 2

0 1 0 1

0 0 1 0

0 0 0 0

1

CCCA
s

0

BBB@

1 0 0 �2

0 1 0 1

0 0 1 0

0 0 0 0

1

CCCA

The solution to the linear system, ~x, is the vector

~x =

0

B@
�2

1

0

1

CA

Page 14

Section 1.2

1.2.7 Final Notes on The LU Factorization

In our treatment of the LU factorization we constructed the LU decomposition
using the following process.

1. reduce A to an echelon form U by a sequence of row replacement opera-
tions, if possible

2. place entries in L such that the same sequence of row operations reduces L
to I

There is much more to the LU factorization than what was presented in this sec-
tion. There are for example other methods for constructing A = LU that you
may encounter in future courses or project you are working on. In our approach,
the only row operation we use to construct L and U is to replace a row with a
multiple of a row above it. Multiplying a row by a non-zero scalar is not needed,
but more importantly, we cannot swap rows. More advanced linear algebra and
numerical analysis courses would address this significant limitation.

1.2.8 Exercises

1. Construct the LU Factorizations for the following matrices.

(a) A =

�1 5 3

1 �10 �3

!

(b) A =

0

B@
1 5

2 10

0 60

1

CA

(c) A =

0

B@
2 1 0

4 3 1

0 �1 2

1

CA

2. Show that the product of two n⇥n lower triangular matrices is lower trian-
gular.

Page 15

Section 1.2

3. Show that the inverse of an n ⇥ n lower triangular matrix is also n ⇥ n and
lower triangular.

Page 16

Section 1.3

1.3 The Leontif Input-Output Model
Input–output models are used in economics to model the inter-dependencies be-
tween different sectors of an economy. Wassily Leontief (1906–1999) is credited
with developing the type of analysis that we explore in this chapter. His work on
this model earned a Nobel Prize in Economics.

The input-output model assumes that there are sectors in an economy that pro-
duce a set of desired products to meet an external demand. The model also as-
sumes that the sectors themselves will also demand a portion of the output that
the sectors produce. If the sectors produce exactly the number of units to meet
the external demand, then we have the equation

(sector output)� (internal consumption) = (external demand)

In this section we will see that this equation is a linear system that can be solved
to determine the output the economy needs to produce to meet the external de-
mand.

1.3.1 Example 1: The Internal Consumption Matrix

Suppose an economy that has two sectors: manufacturing (M) and energy (E).
Both of the sectors produce an output to meet an external demand (D) for their
products. Sectors M and E also require output from each other to produce their
output. The way in which they do so is described in the diagram below.

M

D

E

0.2

0.4

4 12
0.1

0.3

The numbers in the above diagram can be interpreted as follows.

Page 17

Section 1.3

• For every 100 units that sector M creates, M requires 40 units from M and
10 units from E.

• For every 100 units that sector E creates, E requires 20 units from M and 30
units from E.

• An external demand (D) requires 4 units from M and 12 units from E.

In other words, if M were to create xM units, then M would consume 0.4xM units
from M and 0.1xM units from E. The consumption from sector M could be repre-
sented with a vector.

consumption from M =

0.4xM

0.1xM

!
=

xM

10

4

1

!

Likewise, the consumption from sector E would be

consumption from E =
xE

10

2

3

!

Adding these vectors together gives us the total internal consumption from both
sectors.

total internal consumption =
xM

10

4

1

!
+

xE

10

2

3

!

=
1

10

4 2

1 3

!
xM

xE

!

= C~x, where C =
1

10

4 2

1 3

!
, ~x =

xM

xE

!

Matrix C is called the consumption matrix. Typically its entries are between 0
and 1, and the sum of the entries in each column of C will be less than 1. Vector ~x
is the output of the sectors. If the sectors produce exactly the number of units to
meet the external demand, then we have the equation

(sector output)� (internal consumption) = (external demand) (1.5)

~x� C~x = ~d (1.6)

Page 18

Section 1.3

In our example, vector ~d =

4

12

!
, and ~x�C~x = (I�C)~x. This simplifies Equation

(1.6) to

(I � C)~x = ~d (1.7)

1 0

0 1

!
� 1

10

4 2

1 3

!!
xM

xE

!
=

4

12

!
(1.8)

0.6 �0.2

�0.1 0.7

!
xM

xE

!
=

4

12

!
(1.9)

This is a linear system with two equations, whose solution gives us the output
vector that balances production with demand. Expressing the system as an aug-
mented matrix and using row operations yields the solution as shown below.

.6 �.2 4

�0.1 0.7 12

!
s

�1 7 120

6 �2 40

!
s

�1 7 120

0 40 760

!
s

1 0 13

0 1 19

!

The unique solution to this linear system is ~x =

13

19

!
. This is the output that

sectors M and E would need to produce to meet the external demand exactly.

1.3.2 Example 2: An Economy with Three Sectors

Suppose an economy that has three sectors: X, Y, and Z. Each of these sectors
produce an output to meet an external demand (D) for their products. The way
in which they do so is described in the diagram below.

YX Z

D

0.2

16

0.2

24

0.4 0.4

0.4

4

Page 19

Section 1.3

The external demand, D, is requiring 24 units from X, 4 units from Y, and 16 units
from Z. Our goal is to determine how many units the sectors need to produce in
order to satisfy this demand, while also accounting for internal consumption.

If Sector X were to create xX units, then it would consume 0.2xX units from X and
0.4xX units from Y. This consumption could be represented by the vector

consumption from Sector X =

0

B@
0.2xX

0.4xX

0xX

1

CA =
xX

10

0

B@
2

4

0

1

CA

Likewise, the consumption from the other two sectors are

consumption from Sector Y =
xY

10

0

B@
0

4

0

1

CA

consumption from Sector Z =
xZ

10

0

B@
0

4

2

1

CA

Adding these three vectors together gives us the total internal consumption from
all sectors and the consumption matrix C.

total internal consumption =
xX

10

0

B@
2

4

0

1

CA+
xY

10

0

B@
0

4

0

1

CA+
xZ

10

0

B@
0

4

2

1

CA

=
1

10

0

B@
2 0 0

4 4 4

0 0 2

1

CA

0

B@
xX

xY

xZ

1

CA

= C~x, where C =
1

10

0

B@
2 0 0

4 4 4

0 0 2

1

CA , ~x =

0

B@
xX

xY

xZ

1

CA

Each of the sectors in our economy are producing units to satisfy an external
demand. The difference between the output and the internal consumption will
represent the number of units produced to meet external demand.

remaining units to meet demand = (sector output)� (internal consumption)

= ~x� C~x

= (I � C)~x

Page 20

Section 1.3

If the sectors are to meet the needs of the external demand exactly, the demand
would need to equal the number of units produced after internal consumption is
taken into account. That is, we need that

(I � C)~x = ~d

This is a linear system that can be solved for the output vector, ~x. This could be
computed using an augmented matrix.

⇣
I � C ~d

⌘
=

0

B@
0.8 0 0 24

�0.4 0.6 �0.4 4

0 0 0.8 16

1

CA

s

0

B@
8 0 0 240

�4 6 �4 40

0 0 8 160

1

CA

s

0

B@
1 0 0 30

�4 6 �4 40

0 0 1 20

1

CA

s

0

B@
1 0 0 30

0 1 0 40

0 0 1 20

1

CA

A helpful trick when reducing these matrices by hand is to multiply each row by
10 to make the algebra a bit less tedious. The above augmented matrix is in row
reduced echelon form, and indicates that the desired output is

~x =

0

B@
30

40

20

1

CA

1.3.3 Exercises

1. Consider the production model ~x = C~x+~d for an economy with two sectors,

where C =

.0 .5

.6 .2

!
, and ~d =

5

3

!
.

Page 21

Section 1.3

(a) Construct the augmented matrix that can be used to calculate ~x.

(b) Solve your linear system for ~x.

2. A model for an economy consists of four sectors, W, X, Y, and Z, and an ex-
ternal demand, D. The relationships between them are given in the diagram
below.

W X Y

Z

D

0.1

18

0.2

0.10.1

3

0.1

27

0.2 0.2

0.2

Sector Z provides resources to the other sectors internally. There is no ex-
ternal demand from D for the output from Z.

(a) Construct the augmented matrix which can be used to solve the sys-
tem for the output that would meet the external demand exactly while
accounting for internal consumption between the four sectors.

(b) Solve your augmented matrix to determine the desired output vector.

Page 22

Section 1.4

1.4 2D Computer Graphics
Linear transformations are often used in computer graphics to simulate the mo-
tion of an object. They can be modeled with a matrix-vector product of the form

T (~x) = A~x

where ~x is a vector that represents a point that is transformed to the vector A~x.
The matrix-vector product A~x is a transformation that acts on the vector ~x to
produce a new vector,~b = A~x, and if we set the function T (~x) to be

T (~x) = A~x = ~b

then T maps the vector ~x to vector~b. The nature of the transform is described by
matrix A.

Translations are a type of transformation needed in computer graphics. But trans-
lations are not a linear transformation because they do not leave the origin fixed.
How might we use matrix multiplication in order to perform such transforma-
tions? In this section we answer this question by introducing homogeneous co-
ordinates, which allow for more general transformations to be computed with
linear algebra.

1.4.1 Homogeneous Coordinates

Homogeneous coordinates are a tool that can be used to model translations.

Each point (x, y) in R2 can be identified with the point (x, y, 1), on the plane
in R3 that lies 1 unit above the xy-plane.

Definition: Homogeneous Coordinates in R2

For example, a translation of the form (x, y) ! (x + h, y + k) is a transformation.
The parameters h and k adjust the location of the point (x, y) after the transfor-

Page 23

Section 1.4

mation. This transform can be represented as a matrix multiplication with homo-
geneous coordinates in the following way.

0

B@
1 0 h

0 1 k

0 0 1

1

CA

0

B@
x

y

1

1

CA =

0

B@
x+ h

y + k

1

1

CA

The first two entries can be extracted from the output of the transform to obtain
the coordinate of the translated point. The following examples demonstrate how
homogeneous coordinates can be used to create more general transforms.

1.4.2 Example 1: A Composite Transform with Translation

Suppose the transformation T (~x) reflects points in R2 across the line x2 = x1 and
then translates them by 2 units in the x1 direction and 3 units in the x2 direction.
In this example we will use homogeneous coordinates to construct a matrix A so
that T = A~x.

With homogeneous coordinates the point (x, y) may be represented by the vector
0

B@
x

y

1

1

CA

Points in R2 can be reflected across the line x2 = x1 using the standard matrix

Ar =

0 1

1 0

!

With homogeneous coordinates our point is represented with a vector in R3, so
we use the block matrix

A1 =

Ar 0

0 1

!
=

0

B@
0 1 0

1 0 0

0 0 1

1

CA

The symbol 0 denotes a matrix of zeroes. In this case, either a 1 ⇥ 2 matrix or a
2 ⇥ 1 matrix. Then the matrix-vector product below produces the needed trans-

Page 24

Section 1.4

formation.

A1~x =

0

B@
0 1 0

1 0 0

0 0 1

1

CA

0

B@
x

y

1

1

CA =

0

B@
y

x

1

1

CA

Note that the x1 and x2 coordinates have been swapped, as required for the re-
flection through the line x2 = x1. The matrix below will perform the translation
we need.

A2 =

0

B@
1 0 2

0 1 3

0 0 1

1

CA

The product below will apply the translation, of 2 units in the x1 direction and 3

units in the x2 direction, to the reflected point.

T (~x) = A2(A1~x) = A2A1~x =

0

B@
1 0 2

0 1 3

0 0 1

1

CA

0

B@
y

x

1

1

CA =

0

B@
y + 2

x+ 3

1

1

CA

Therfore, our standard matrix is

A = A2A1 =

0

B@
1 0 2

0 1 3

0 0 1

1

CA

0

B@
0 1 0

1 0 0

0 0 1

1

CA =

0

B@
0 1 2

1 0 3

0 0 1

1

CA

1.4.3 Example 2: Rotation About the Point (0,1)

Triangle S is determined by the points (1, 1), (2, 3), (3, 1). Transform T rotates
these points by ⇡/2 radians counterclockwise about the point (0, 1). Our goal is
to use matrix multiplication to determine the image of S under T .

A sketch of the triangle before and after the rotation is in the diagram below.

x1

x2

1 2 3

1

2

3

Page 25

Section 1.4

We need a way to calculate the locations of the points after the transformation.
The rotation can be calculated by first representing each point by a vector in ho-
mogeneous coordinates, and then multiplying the vectors by a sequence of ma-
trices that perform the needed transformation. The transformations will first shift
the points in a way so that the rotation point is about the origin. We will then ro-
tate about the origin by the desired about. And then we move the rotated points
up by one unit to account for the initial translation.

Step 1: Shift Points Down by 1 Unit

In homogeneous coordinates our three points can be represented by the vectors
below.

~a =

0

B@
1

1

1

1

CA , ~b =

0

B@
2

3

1

1

CA , ~c =

0

B@
3

1

1

1

CA

Multiplying each vector by the matrix

A1 =

0

B@
1 0 0

0 1 �1

0 0 1

1

CA

shifts the points down by one unit.

~a =

0

B@
1

1

1

1

CA! A1~a =

0

B@
1 0 0

0 1 �1

0 0 1

1

CA

0

B@
1

1

1

1

CA =

0

B@
1

0

1

1

CA

~b =

0

B@
2

3

1

1

CA! A1
~b =

0

B@
1 0 0

0 1 �1

0 0 1

1

CA

0

B@
1

1

1

1

CA =

0

B@
2

2

1

1

CA

~c =

0

B@
3

1

1

1

CA! A1~c =

0

B@
1 0 0

0 1 �1

0 0 1

1

CA

0

B@
1

1

1

1

CA =

0

B@
3

0

1

1

CA

Note the difference between the input and output vectors. The second entry of the
output vectors is one less than their corresponding entries in the input vectors.
Our translated triangle and rotation point is shown below.

Page 26

Section 1.4

x1

x2

1 2 3

1

2

3

With this transform, the rotation point also moves down one unit, from (0, 1) to
the origin (0, 0).

Step 2: Rotate About (0,0)

Rotating the translated points by ⇡/2 radians about the origin can be calulated by
multiplying the three vectors by the matrix

A2 =

0

B@
0 �1 0

1 0 0

0 0 1

1

CA

This gives us three new points.

~a =

0

B@
1

1

1

1

CA! A2A1~a =

0

B@
0 �1 0

1 0 0

0 0 1

1

CA

0

B@
1

0

1

1

CA =

0

B@
0

1

1

1

CA

~b =

0

B@
2

3

1

1

CA! A2A1
~b =

0

B@
0 �1 0

1 0 0

0 0 1

1

CA

0

B@
2

2

1

1

CA =

0

B@
�2

2

1

1

CA

~c =

0

B@
3

1

1

1

CA! A2A1~c =

0

B@
0 �1 0

1 0 0

0 0 1

1

CA

0

B@
3

0

1

1

CA =

0

B@
0

3

1

1

CA

Finally, to undo the initial translation that placed the rotation point at the origin,
we need to translate our points up by one unit.

Step 3: Translate Points Up One Unit

Translating the data up by one unit can be accomplished by multiplying the three

Page 27

Section 1.4

vectors by the matrix

A3 =

0

B@
1 0 0

0 1 1

0 0 1

1

CA

This gives us three new points.

~a =

0

B@
1

1

1

1

CA! A3A2A1~a =

0

B@
1 0 0

0 1 1

0 0 1

1

CA

0

B@
0

1

1

1

CA =

0

B@
0

2

1

1

CA

~b =

0

B@
2

3

1

1

CA! A3A2A1
~b =

0

B@
1 0 0

0 1 1

0 0 1

1

CA

0

B@
�2

2

1

1

CA =

0

B@
�2

3

1

1

CA

~c =

0

B@
3

1

1

1

CA! A3A2A1~c =

0

B@
1 0 0

0 1 1

0 0 1

1

CA

0

B@
0

3

1

1

CA =

0

B@
0

4

1

1

CA

Our rotated and translated triangle is shown below.

x1

x2

1 2 3�1�2�3

1

2

3

Therefore the standard matrix that performs a rotation by ⇡/2 degrees about (0, 1)
is the matrix

A = A3A2A1 =

0

B@
1 0 0

0 1 1

0 0 1

1

CA

0

B@
0 �1 0

1 0 0

0 0 1

1

CA

0

B@
1 0 0

0 1 �1

0 0 1

1

CA =

0

B@
0 �1 1

1 0 1

0 0 1

1

CA

Our result can be verified by calculating A~a, A~b, or A~c.

Page 28

Section 1.4

1.4.4 Example 3: A Reflection Through The Line x2 = x1 + 3

In this example we construct the 3⇥3 standard matrix, A, that uses homogeneous
coordinates to reflect points in R2 across the line x2 = x1 + 3. We will confirm
that our results are correct by calculating T (~x) = A~x for any point ~x that uses
homogeneous coordinates.

The standard matrix A will be the product of three matrices that translate and re-
flect points using homogeneous coordinates. The first matrix will translate points
in some way so that the line about which we are reflecting will pass through the
origin. We can use

A1 =

0

B@
1 0 0

0 1 �3

0 0 1

1

CA

This matrix will shift points down three units so that the line x2 = x1 + 3 will
pass through the origin. Note that at this point we could have also used a matrix
that, for example, shifts to the right by three units. The second matrix will reflect
points through the shifted line, which is x2 = x1. Recall that the matrix

0 1

1 0

!

will reflect vectors in R2 through the line x2 = x1. This is because any point with
coordinates (x1, x2) can be represented with the vector

~x =

x1

x2

!

and
0 1

1 0

!
x1

x2

!
=

x2

x1

!

The point (x1, x2) is mapped to (x2, x1), which is a reflection through the line
x2 = x1 in R2. The standard matrix for this transformation in homogeneous coor-
dinates is

A2 =

0

B@
0 1 0

1 0 0

0 0 1

1

CA

Page 29

Section 1.4

Our final transformation shifts points back up by three units to undo the initial
translation.

A3 =

0

B@
0 1 0

1 0 3

0 0 1

1

CA

The standard matrix for the transformation that reflects points in R2 across the
line x2 = x1 + 3 is

A = A3A2A1 =

0

B@
0 1 0

1 0 3

0 0 1

1

CA

0

B@
0 1 0

1 0 0

0 0 1

1

CA

0

B@
1 0 0

0 1 �3

0 0 1

1

CA =

0

B@
0 1 �3

1 0 3

0 0 1

1

CA

We can check whether our work is correct by transforming any point (x1, x2) with
the above standard matrix. For example, the point (1, 1) is transformed by calcu-
lating

T (~x) = A~x =

0

B@
0 1 �3

1 0 3

0 0 1

1

CA

0

B@
1

1

1

1

CA =

0

B@
�2

4

1

1

CA

The reflected point is (�2, 4). The line of reflection, initial point, and the reflected
point are shown below.

x1

x2

(1, 1)

(�2, 4)

0 2 4�2�4

2

4

1.4.5 The Data Matrix

The examples in this section have only involved a small number points that need
to be transformed. For problems involving many points, it may be more conve-

Page 30

Section 1.4

nient to represent the points in what we refer to as a data matrix. For example, the
shape in the figure below is determined by five points, or vertices, d1, d2, . . . , d5.
Their respective homogeneous coordinates can be stored in the columns of a ma-
trix, D.

D =
⇣
~d1 ~d2 ~d3 ~d4 ~d5

⌘
=

0

B@
2 2 3 4 4

1 2 3 2 1

1 1 1 1 1

1

CA

For our purposes, the order in which the points are placed into D is arbitrary.

x1

x2

d1

d2

d3

d4
d5

0 1 2 3 4

1

2

3

In the previous examples we applied a transform with a matrix-vector multipli-
cation. With a data matrix we can use a similar approach. Recall that the product
of two matrices A and D, is defined as

AD = A
⇣
~d1 ~d2 · · · ~dp

⌘
=
⇣
A~d1 A~d2 · · · A~dp

⌘

where ~d1, ~d2, · · · , ~dp are the columns of D. In other words, can perform the trans-
formation on our data by computing AD, which transforms each column inde-
pendently of the others.

For example, applying the transform in the previous example will reflect our
shape through the line x2 = x1 + 3. The transformation is found by computing

AD =

0

B@
0 1 �3

1 0 3

0 0 1

1

CA

0

B@
2 2 3 4 4

1 2 3 2 1

1 1 1 1 1

1

CA =

0

B@
�2 �1 0 �1 �2

5 5 6 7 7

1 1 1 1 1

1

CA

Extracting the first two entries of each column of the result gives us the trans-
formed points (green), as shown in the figure below.

Page 31

Section 1.4

x1

x2

d1

d2

d3

d4
d5

0�2�4 2 4

2

4

8

1.4.6 Exercises

1. Construct the standard matrices for the following transforms.

(a) The standard matrix of the transform ~x ! A~x that reflects points in R2

across the line x1 = k.

(b) The standard matrix of the transform ~x ! A~x that rotates points in
R2 about the point (1, 1) and then reflects points through the the line
x2 = 1.

Page 32

Section 1.5

1.5 3D Computer Graphics
Results from the previous section on 2D graphics have a natural extension to
three dimensions. In this section we extend the data matrix and homogeneous
coordinates to three dimensions. This will allow us to model translations and
composite transforms involving many points with matrix multiplication.

1.5.1 Rotations in 3D

Rotations about the origin are linear transforms. Because they are linear they can
be expressed in the form T (~x) = A~x where A is a 3⇥ 3 matrix, and we can obtain
the columns of matrix A by transforming the standard vectors

~e1 =

0

B@
1

0

0

1

CA , ~e2 =

0

B@
0

1

0

1

CA , ~e3 =

0

B@
0

0

1

1

CA

We will use the convention that a positive rotation is in the counterclockwise
direction when looking toward the origin from the positive half of the axis of
rotation. For example, rotating ~e1 about the x3-axis by ✓ radians results in the
vector

T (~e1) =

0

B@
cos ✓

sin ✓

0

1

CA

Transforming the first standard vector ~e1 yields the first column of A. Likewise
the remaining columns can be found by transforming the other standard vectors.

T (~e2) =

0

B@
� sin ✓

cos ✓

0

1

CA , T (~e3) =

0

B@
0

0

1

1

CA

The third standard vector does not change under this transformation because it is
parallel to the rotation axis. The standard matrix for a rotation about the x3-axis
is

A =
⇣
T (~e1) T (~e2) T (~e3)

⌘
=

0

B@
cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

1

CA

Page 33

Section 1.5

A similar analysis gives us the standard matrices for rotations about the x1 and
the x2 axes. Results are summarized in Table 1.1. The standard matrices in the
table can be multiplied together to model transforms that perform multiple trans-
formations. The next example demonstrates this application.

rotation axis standard matrix

x1-axis

0

B@
1 0 0

0 cos ✓ � sin ✓

0 sin ✓ cos ✓

1

CA

x2-axis

0

B@
cos ✓ 0 � sin ✓

0 1 0

sin ✓ 0 cos ✓

1

CA

x3-axis

0

B@
cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

1

CA

Table 1.1: Standard matrices for 3D rotations about the coordinate axes.

1.5.2 Example 1: 3D Rotations

Suppose that the transform ~x ! A~x first rotates points in R3 about the x2-axis
by ⇡/2 radians and then rotates points about the x1-axis by ⇡ radians. We can
determine the standard matrix, A, for this transform in a few different ways. One
approach is to use the standard matrices in Table 1.1. The standard matrix, A, is
the product of two rotation matrices.

A =

0

B@
1 0 0

0 cos ⇡ � sin ⇡

0 sin ⇡ cos ⇡

1

CA

0

B@
cos(⇡/2) 0 � sin(⇡/2)

0 1 0

sin(⇡/2) 0 cos(⇡/2)

1

CA =

0

B@
0 0 �1

0 �1 0

�1 0 0

1

CA

Page 34

Section 1.5

Note that the rotation about the x2-axis is applied before the rotation about the
x1-axis, which determines the multiplication order. The standard matrix for the
first transformation is placed in the rightmost position.

We could also obtain the same result by transforming the standard vectors, be-
cause A =

⇣
T (~e1) T (~e2) T (~e3)

⌘
. The first standard vector gives us the first

column of A.

~e1 =

0

B@
1

0

0

1

CA!

0

B@
0

0

1

1

CA!

0

B@
0

0

�1

1

CA

This result agrees with our result obtained above by multiplying rotation ma-
trices together. Note also that our convention is that a positive rotation is in the
counterclockwise direction when looking toward the origin from the positive half
of the axis of rotation.

1.5.3 The Data Matrix for 3D Transforms

Similar to the 2D case, for problems involving many points it is convenient to
represent the points a data matrix. Analogous to our approach in 2D, points in
R3 can be represented in a matrix whose columns are vectors that correspond to
the points we wish to transform. We may transform this matrix with a matrix-
vector multiplication. Recall that the product of two matrices A and D, is defined
as

AD = A
⇣
~d1 ~d2 · · · ~dp

⌘
=
⇣
A~d1 A~d2 · · · A~dp

⌘

where ~d1, ~d2, · · · , ~dp are the columns of D. In other words, can perform the trans-
formation on our data by computing AD, which transforms each column inde-
pendently of the others. The following example demonstrates this approach.

1.5.4 Example 2: A Projection in 3D with the Data Matrix

Data in Table (1.2) define a cube in R3 with side length 1. Suppose the linear
transform T (~x) projects points in R3 onto the x1x2-plane. In this example we
will construct the matrix, A, that is the standard matrix of the transformation
T (~x) = A~x.

Page 35

Section 1.5

x1 x2 x3

1 1 1

1 2 1

2 2 1

2 1 1

1 1 2

1 2 2

2 2 2

2 1 2

Table 1.2: Corners of a cube with side length 1.

The data in Table (1.2) (blue) and its projection (green) are shown Figure (1.2).

x1

x2

x3

Figure 1.1: Data from Table (1.2) and its projection onto the x1x2-plane.

Because the given transform that we are dealing with in this example is linear, we
can express the transform in the form of a matrix-vector product

T (~x) = A~x

where A is a 3⇥ 3 matrix. Moreover, because we are working with a linear trans-
form, each column of A is equal to the product

A~ei, i = 1, 2, 3

and ~ei is a standard vector. For example, the first column of A can be found using

Page 36

Section 1.5

~e1, which is the vector

~e1 =

0

B@
1

0

0

1

CA

Projecting ~e1 onto the x1x2-plane does not change the vector, because the vector
is already in that plane.

~e1 ! A~e1 = ~e1 = first column of A

The first column of A is ~e1. Likewise, the second column of A is ~e2, becuase ~e2 is
also already in the x1x2-plane.

~e2 =

0

B@
0

1

0

1

CA! A~e2 = ~e2 = second column of A

The last column of A is the projection of ~e3 onto the plane, which is the zero vector.

~e3 =

0

B@
0

0

1

1

CA! A~e3 =

0

B@
0

0

0

1

CA = third column of A

Combining our results for each column of A gives us the standard matrix.

A =

0

B@
1 0 0

0 1 0

0 0 0

1

CA

Now that we have the standard matrix for this transform, we can use it to trans-
form the data in Table 1. Representing each point as a vector in R3 and placing
the vectors in a data matrix, D, will allow us to compute the projection using a
matrix multiplication. Our matrix D is

D =

0

B@
1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 1 1 2 2 2 2

1

CA

The transformed points can be computed as follows.

AD =

0

B@
1 0 0

0 1 0

0 0 0

1

CA

0

B@
1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 1 1 2 2 2 2

1

CA =

0

B@
1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

0 0 0 0 0 0 0 0

1

CA

Extracting the columns of the product gives us the projected points.

Page 37

Section 1.5

1.5.5 3D Homogeneous Coordinates

Homogeneous coordinates in 3D are analogous to the homogeneous 2D coordi-
nates we introduced in the previous section.

(X, Y, Z, 1) are homogeneous coordinates for (x, y, z) in R3

Homogeneous Coordinates in R3

A translation of the form (x, y, z) ! (x + h, y + k, z + l) can be represented as a
matrix multiplication with homogeneous coordinates:

0

BBB@

1 0 0 h

0 1 0 k

0 0 1 l

0 0 0 1

1

CCCA

0

BBB@

x

y

z

1

1

CCCA
=

0

BBB@

x+ h

y + k

z + l

1

1

CCCA

Example 3: A Translation in 3D

The data in Table (1.2) can be translated using a homogeneous coordinate system.
The data matrix Dn in homogeneous coordinates would be

Dh =

0

BBB@

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 1 1 2 2 2 2

1 1 1 1 1 1 1 1

1

CCCA

The transform that, for example, shifts the data by �3 units in the x2 direction
and by 1 unit in the x3-direction is

0

BBB@

1 0 0 0

0 1 0 �3

0 0 1 1

0 0 0 1

1

CCCA
Dh =

0

BBB@

1 1 2 2 1 1 2 2

�2 �1 �1 �2 �2 �1 �1 �2

2 2 2 2 3 3 3 3

1 1 1 1 1 1 1 1

1

CCCA

The figure below shows the original data (blue) and its translated version (green).

Page 38

Section 1.5

x1

x2

x3

1.5.6 Exercises

1. Construct the standard matrices for the following transforms.

(a) The 4⇥ 4 standard matrix of the transform ~x ! A~x that uses homoge-
neous coordinates to reflect points in R3 across the plane x3 = k, where
k is any real number.

(b) The 3⇥ 3 standard matrix of the transform ~x ! A~x that reflects points
in R3 across the plane x1 + x2 = 0.

(c) The 3 ⇥ 3 standard matrix of the transform ~x ! A~x that first rotates
points in R3 about the x3-axis by an angle ✓ and then projects them
onto the x2x3-plane.

2. Line L passes through the point (1, 0, 0) and is parallel to the vector ~v, where

~v =

0

B@
0

1

0

1

CA

Construct the 4 ⇥ 4 matrix that uses homogeneous coordinates to rotate
points in R3 about line L by an angle ✓.

Page 39

Chapter 2

Symmetric Matrices and the SVD

2.1 Orthogonal Diagonalization
Many algorithms rely on a type of matrix that is equal to its transpose. If matrix
A satisfies A = AT , then A is symmetric. A common example of a symmetric
matrix is the product ATA, where A is any m ⇥ n matrix. We use ATA when, for
example, constructing the normal equations in least-squares problems. One way
to see that ATA is symmetric for any matrix A is to take the transpose of ATA.

(ATA)T = ATATT = ATA

ATA is equal to its transpose so it must be symmetric. But another way to see that
ATA is symmetric is that for any rectangular matrix A with columns a1, . . . , an, is
to express the matrix product using the row-column rule for matrix multiplica-
tion.

ATA =

0

BBBB@

�� aT1 ��
�� aT2 ��

...
...

...
�� aTn ��

1

CCCCA

0

B@
| | · · · |
a1 a2 · · · an
| | · · · |

1

CA =

0

BBBB@

aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an

...
...

aTna1 aTna2 · · · aTnan

1

CCCCA

| {z }
entries are dot products of columns of A

Note that aTi aj is the dot product between ai and aj . And because dot products

40

Section 2.1

commute, in other words

aTi aj = ai · aj = aj · ai = aTj ai

ATA is symmetric.

One of the reasons that symmetric matrices are found in many algorithms is that
they posses several properties that we can use to make useful or efficient calcu-
lations. In this section we investigate some of these properties that symmetric
matrices have. In later sections of this chapter we will use these properties to
develop and understand algorithms and their results.

2.1.1 Properties of Symmetric Matrices

In this section we give three theorems that characterize symmetric matrices.

1) Symmetric Matrices Have Orthogonal Eigenspaces

The eigenspaces of symmetric matrices have a useful property that we can use
when, for example, diagoanlizing a matrix.

If A is a symmetric matrix, with eigenvectors ~v1 and ~v2 corresponding to
two distinct eigenvalues, then ~v1 and ~v2 are orthogonal.

Theorem

More generally this theorem implies that eigenspaces associated to distinct eigen-
values are orthogonal subspaces.

Proof

Our approach will be to show that if A is symmetric then any two of its eigenvec-
tors ~v1 and ~v2 must be orthogonal when their corresponding eigenvalues �1 and

Page 41

Section 2.1

�2 are not equal to each other.

�1~v1 · ~v2 = A~v1 · ~v2 using A~vi = �i~vi

= (A~v1)
T~v2 using the definition of the dot product

= ~v1
TAT~v2 property of transpose of product

= ~v1
TA~v2 given that A = AT

= ~v1 · A~v2 again using the definition of the dot product

= ~v1 · �2~v2 using A~vi = �i~vi

= �2~v1 · ~v2

Rearranging the equation yields

0 = �2~v1 · ~v2 � �1~v1 · ~v2 = (�2 � �1)~v1 · ~v2

But �1 6= �2 so ~v1 · ~v2 = 0. In other words, eigenvectors corresponding to distinct
eigenvalues must be orthogonal.

⌅

This theorem can be sometimes be used to quickly identify the eigenvectors of a
matrix. For example, if A is a 2 ⇥ 2 matrix and we know that ~v1 is an eigenvec-
tor of A, then we can find any non-zero vector orthogonal to ~v1 to identify the
eigenvector for the other eigenspace.

2) The Eigenvalues of a Symmetric Matrix are Real

If A is a real symmetric matrix then all eigenvalues of A are real.
Theorem

A proof of this result is in Appendix 1.2.

3) The Spectral Theorem

It turns out that every real symmetric matrix can always be diagonalized using
an orthogonal matrix, which is a result of the spectral theorem.

Page 42

Section 2.1

An n ⇥ n matrix A is symmetric if and only if the matrix can be or-
thogonally diagonalized.

The Spectral Theorem

A proof of this theorem is beyond the scope of these notes, but there are several
important consequences of this theorem. All symmetric matrices can not only be
diagonalized, but they can be diagonalized with an orthogonal matrix. Moreover,
the only matrices that can be diagonalized orthogonally are symmetric, and that
if a matrix can be diagonalized with an orthogonal matrix, then it is symmetric.

2.1.2 Examples

Example 1: Orthogonal Diagonalization of a 2⇥ 2 Matrix

Suppose A is the symmetric matrix below.

A =

0 �2

�2 3

!
, �1 = 4, �2 = �1

The eigenvalues of A are given. In this example we will diagonalize A using an
orthogonal matrix, P . For eigenvalue �1 = 4 we have

A� �1I =

�4 �2

�2 �1

!

A vector in the null space of A� �1I is the eigenvector

~v1 =

1

�2

!

A vector orthogonal to ~v1 is

~v2 =

2

1

!

which must be an eigenvector for �2 because A is symmetric.

Page 43

Section 2.1

Dividing each of the eigenvectors by their respective length, and then collecting
these unit vectors into a single matrix, P , we obtain an orthogonal matrix. In
other words,P�1P = PP�1 = I . This convenient property gives us a convenient
way to compute P�1 should it be needed.

Placing the eigenvalues of A in the order that matches the order used to create P ,
we obtain the factorization

A = PDP T , D =

�1 0

0 �2

!
, P =

1p
5

1 2

�2 1

!

Example 2: Orthogonal Diagonalization of a 3⇥ 3 Matrix

In this example we will diagonalize a matrix, A, using an orthogonal matrix, P .

A =

0

B@
0 0 1

0 1 0

1 0 0

1

CA , � = �1, 1

The eigenvalues of A are given. For eigenvalue �1 = �1 we have

A� �1I =

0

B@
1 0 1

0 2 0

1 0 1

1

CA ⇠

0

B@
1 0 1

0 2 0

1 0 1

1

CA

A vector in the null space of A� �1I is the eigenvector

~v1 =

0

B@
1

0

�1

1

CA

For eigenvalue �2 = 1 we have

A� �2I =

0

B@
�1 0 1

0 0 0

1 0 �1

1

CA ⇠

0

B@
�1 0 1

0 0 0

0 0 0

1

CA

Page 44

Section 2.1

By inspection, two vectors in the null space of A� �2I are

~v2 =

0

B@
0

1

0

1

CA , ~v3 =

0

B@
1

0

1

1

CA

There are many other choices that we could make but the above two vectors will
suffice. Note that ~v2 and ~v3 happen to be orthogonal to each other. If they hap-
pened to not be orthogonal, one could use the Gram-Schmidt procedure to make
them so.

Dividing each of the three eigenvectors by their respective length, and then col-
lecting these unit vectors into a single matrix, P , we obtain an orthogonal matrix.
This will give us a matrix whose inverse is equal to its transpose. In other words,
P is an orthogonal matrix, and P�1P = PP�1 = I . This convenient property
gives us a convenient way to compute P�1 should it be needed.

Placing the eigenvalues of A in the order that matches the order used to create P ,
we obtain the factorization

A = PDP T , D =

0

B@
�1 0 0

0 1 0

0 0 1

1

CA , P =
1p
2

0

B@
1 0 1

0
p
2 0

�1 0 1

1

CA

2.1.3 Summary

In this section we explored how we might construct an orthogonal diagonaliza-
tion of a symmetric matrix, A = PDP T . Note that when a symmetric matrix
has a repeated eigenvalue, Gram-Schmidt may be needed when eigenvalues are
repeated to construct a full set of orthonormal eigenvectors that span Rn. The
theorems we introduced in this section gives us that

• all eigenvalues of A are real

• eigenspaces of A are mutually orthogonal

• A can be diagonalized as A = PDP T

Page 45

Section 2.2

2.1.4 Exercises

1. Suppose A and C are n⇥ n matrices, ~x 2 Rn, and C is symmetric. Which of
the following products are equal to a symmetric matrix?

(a) AAT

(b) ~x~x T

(c) C2

2. If A = PDP T where D is a diagonal matrix and P T = P�1, then is A sym-
metric?

Page 46

Section 2.2

2.2 Quadratic Forms
Does this inequality hold for all real values of x and y?

5x2 + 8y2 � 4xy � 0

Were it not for the �4xy term we could immediately tell that this statement is
true. Because if the expression was 5x2 + 8y2 � 0, we would more easily see that
this can never be negative for any real values of x and y. But could their sum ever
be less than 4xy? Because if it is, then 5x2 + 8y2 � 4xy would be negative and the
inequality would not be true.

After introducing some theory and procedures we will circle back to this moti-
vating problem. Our first step will be to draw a connection to quadratic forms,
which allow us to study the above inequality in more general context.

2.2.1 Quadratic Forms

A quadratic form is a function Q : Rn ! R, given by

Q(~x) = ~xTA~x =
⇣
x1 x2 · · · xn

⌘

0

BBBB@

a11 a12 · · · a1n
a12 a22 · · · a2n

...
...

a1n a2n · · · ann

1

CCCCA

0

BBBB@

x1

x2

...
xn

1

CCCCA

Matrix A is n ⇥ n and symmetric and ~x is a vector of variables. If we represent
quadratic forms using a symmetric matrix, we can take advantage of their prop-
erties to solve problems like the one given at the start of this article. First lets
explore a few example of quadratic forms so that we have a better understanding
of what they are.

Page 47

Section 2.2

Example 1: Quadratic forms in R2

In this example we consider the general quadratic form in two variables, Q(x, y) =

~x TA~x, with

A =

a11 a12
a21 a22

!
, ~x =

x

y

!

A is symmetric, so we have a12 = a21, and

Q(x, y) = a11x
2 + a22y

2 + 2a12xy

A particular example of a quadratic form familiar to many reading this section
would be

Q(x, y) =
⇣
x y

⌘ 1 0

0 1

!
x

y

!
= x2 + y2

Setting Q = r2 equal to a constant generates a set of points that create a circle with
radius r. Two examples are shown in the diagram below.

x

y

2

2

�2

�2

4

4

�4

�4

r2 = 1 = x2 + y2

r2 = 16 = x2 + y2

Other choices of Q and the entries in A will create other curves in R2. For example,
Q = ~x TA~x with

A =

4 �2

�2 2

!

Page 48

Section 2.2

generates a set of equations the form Q = 4x2 + 2y2 � 4xy, because

Q =
⇣
x y

⌘ 4 �2

�2 2

!
x

y

!

=
⇣
x y

⌘ 4x� 2y

�2x+ 2y

!

= 4x2 � 2yx� 2xy + 2y2

= 4x2 + 2y2 � 4xy

If we set Q = 4 we obtain the ellipse below.

x

y

2

2

�2

�2

Example 2: A Quadratic Form

In this example we express Q = x2 � 6xy + 9y2 in the form Q = ~xTA~x, where
~x 2 R2 and A = AT . Placing coefficients of x2 and y2 on the main diagonal, and
dividing coefficient of xy by 2, we obtain

x2 � 6xy + 9y2 =
⇣
x y

⌘ 1 �3

�3 9

!
x

y

!

We can verify this result by multiplying ~x TA~x.

Page 49

Section 2.2

Example 3: Quadratic Form in Three Variables

Write Q in the form ~xTA~x for ~x 2 R3.

Q(~x) = 5x2
1 � x2

2 + 3x2
3 + 6x1x3 � 12x2x3

Note that we can write Q as

Q = 5x2
1 � x2

2 + 3x2
3 + 6x1x3 � 12x2x3 + 0x1x2

Taking a similar approach to the previous exercise, we obtain

Q =
⇣
x1 x2 x3

⌘
0

B@
5 0 3

0 �1 �6

3 �6 3

1

CA

0

B@
x1

x2

x3

1

CA

Again, we can verify this result by multiplying ~x TA~x.

2.2.2 Principle Axes Theorem

One of the problems we will explore later in this course involves determining
the points on a curve of the form 1 = ~x TA~x that are closest or furthest from the
origin. This particular problem will be aided with the Principal Axes Theorem.

If A is a symmetric matrix then there exists an orthogonal change of variable
~x = P~y that transforms ~xTA~x to ~y TD~y with no cross-product terms.

Theorem

The proof of this theorem relies on the fact that A is a symmetric matrix and
therefore can be diagonalized using an orthogonal matrix.

Proof

Given Q(~x) = ~x TA~x, where ~x 2 Rn is a variable vector and A is a real n ⇥ n

symmetric matrix. Then we can write

A = PDP T

Page 50

Section 2.2

where P is an n⇥ n orthogonal matrix. A change of variable can be represented
as

~x = P~y, or ~y = P�1~x

With this change of variable, the quadratic form ~x TA~x becomes

Q = ~x TA~x = (P~y)TA(P~y)

= ~y TP TAP~y

= ~y TD~y, using A = PDP T

Thus, Q is expressed without cross-product terms because D is a diagonal matrix.

2.2.3 Example 4: Change of Variable

Consider the quadratic form

Q = ~xTA~x, A =

5 2

2 8

!

The eigenvalues and eigenvectors of A are given below.

�1 = 9, �2 = 4, ~v1 =

2

�1

!
, ~v2 =

1

2

!

We will identify a change of variable that removes the cross-product term. Our
change of variable is

~x = P~y, P =
1p
5

2 1

�1 2

!

Using this change of variable, Q = ~x TA~x = ~y TD~y = 9y21 + 4y22 .

If, for example, we set Q = 1, we obtain two curves in R2. One curve is x1x2-plane,
the other in the y1y2-plane.

Page 51

Section 2.2

x1

x2

2

Q = 5x2 + 4xy + 8y2 = 1

y1

y2

2

Q = 9y21 + 4y22 = 1

Our change of variable can simplify our analysis. For example, in the y1y2-plane
we can more easily identify points on the ellipse that are closest/furthest from
the origin, and determine whether Q can take on negative/positive values.

2.2.4 Example 5: Inequality

We can now return to our motivating question from the start of this section. Does
x2 � 6xy + 9y2 � 0 hold for all x, y?

To answer this question we set Q = 5x2 � 4xy + 8y2.

Q = 5x2 � 4xy + 8y2 = ~x TA~x, A =

5 �2

�2 8

!

The characteristic polynomial is (��5)(��8)�4 = (��9)(��4). The eigenvalues
therefore are �1 = 4 and �2 = 9. Note that to quickly check that these numbers
are, in fact, the eigenvalues of A, we could check whether A � �1I and A � �2I

are singular.

Knowing the eigenvalues of A, we find that

Q = ~y TD~y = 4y21 + 9y22

We see that Q can be zero when y1 = y2 = 0, but Q is never negative. So the
inequality is true.

Page 52

Section 2.3

2.2.5 Summary

We saw how we can express quadratic forms in the form Q(~x) = ~xTA~x, for
~x 2 Rn. In this section we introduced a representation of quadratic forms with
symmetric matrices. We saw how we can express quadratic forms in the form
Q(~x) = ~xTA~x, for ~x 2 Rn without cross-product terms. We gave a change of
variable to represent quadratic forms without cross-product terms and used the
Principle Axis Theorem to investigate inequalities involving quadratic forms.

Another one of the reasons we are interested in quadratic forms is because they
can be used to describe linear transforms. Consider the transform ~x ! A~x = ~y.
The squared length of the vector ~y = A~x is a quadratic form.

k~y k = kA~x k2 = (A~x) · (A~x) = ~x TATA~x

Because ATA is symmetric, we can use symmetric matrices and their properties
to characterize linear transforms. Later in this course we will explore this connec-
tion.

Page 53

Section 2.3

2.3 Quadratic Surfaces
In a previous section of these notes we encountered situations where we want to
minimize or maximize a quadratic function of the form

Q = ~xTA~x (2.1)

where A 2 R2⇥2 is symmetric. Then the set of ~x that satisfies Equation (2.1) We
were also interested in additional constraints on what ~x could be. These sorts
of problems are encountered, for example, when constructing the singular value
decomposition of a matrix, which we will get to soon. Either way, to help us
understand these constrained optimization problems it can be helpful to have a
geometric interpretation of what Equation (2.1) represents. The interpretations
and terminology we introduce in this section can help us describes the shape of
Q and solve optimization problems related to it.

2.3.1 Example 1: A Quadratic Surface in R3

For a fixed Q, Equation (2.1) will define a curve in R2. For example, if

A =

2 1

1 2

!

then the points that satisfy

Q = ~x T

2 1

1 2

!
~x = 2x2 + 2y2 + 2xy

generates a curve in R2. The diagram below shows a set of curves for Q equal to 2
and to 8. As we vary the value of Q, the size of our curve will change. In general,
when we increase the value of Q, the curve gets larger and points on the curve
get further away from the origin. As we decrease Q, the opposite happens: the
curve gets smaller and points on the curve get closer to the origin.

If we consider many values of Q we would generate many more curves in R2.
The curves could also be displayed in R3, with one of the axes corresponding to

Page 54

Section 2.3

x

y

Q = 2 Q = 8

Figure 2.1: Curves generated by Q = 2x2 + 2y2 + 2xy.

Page 55

Section 2.3

Figure 2.2: The surface Q = z = 2x2 + 2y2 + 2xy.

Q. In fact, if we allow Q to vary continuously, Q = 2x2 + 2y2 + 2xy would give us
a surface in R3, which is shown in Figure (2.2).

Those familiar with MATLAB may be surprised that the above surface can be
generated using only a few lines of code. The script that was used to create Figure
(2.2) is below. The code uses the fimplicit3 function.

fimplicit3(@(x,y,Q) Q-2*y.^2-2*x.^2-2*x.*y)

xlabel(’x’)

ylabel(’y’)

zlabel(’Q’)

set(gcf,’color’,’w’); % sets background color to white

set(gca,’FontSize’,18) % increases font size to 18

MATLAB Script

Most of the code above was used to format the diagram. The MATLAB fimplicit3
function plots the three dimensional implicit function defined by f(x, y, z) = 0

Page 56

Section 2.3

over a default interval of [�5, 5] for input values of x, y, z. By rearranging Equa-
tion (2.1) we can obtain Q� 2y2 � 2x2 � 2xy = 0 which is the form that MATLAB
needs for fimplicit3.

2.3.2 Example 2: Quadratic Surfaces

The entries of A in Equation (2.1) will determine the shape of a quadratic surface
that it creates. Several examples are shown in the figures below.

Figure 2.3: Q = x2 + y2 Figure 2.4: Q = �x2 � y2

Figure 2.5: Q = y2 Figure 2.6: Q = x2 � y2

Notice how some surfaces will have a maximum or minimum value. Figures (2.3)

Page 57

Section 2.3

and (2.5) have a minimum value of Q = 0. Whereas the form shown in Figure
(2.4) has a maximum value Q = 0.

2.3.3 Classifying Quadratic Forms

Quadratic functions of the form Q = ~xTA~x can be classified based on the values
that Q can have.

A quadratic form Q is
• positive definite if Q > 0 for all ~x 6= ~0.

• negative definite if Q < 0 for all ~x 6= ~0.

• positive semidefinite if Q � 0 for all ~x.

• negative semidefinite if Q 0 for all ~x.

• indefinite if Q takes on positive and negative values for ~x 6= ~0.

Definition

That these categories are not mutually exclusive. A form can, for example, be
both positive definite and positive semidefinite. The following theorem allows
us to classify a form based on the eigenvalues of the matrix of the quadratic form.

If A is a symmetric matrix with eigenvalues �i, then Q = ~xTA~x is
• positive definite when all eigenvalues are positive

• positive semidefinite when all eigenvalues are non-negative

• negative definite when all eigenvalues are negative

• negative semidefinite when all eigenvalues are non-positive

• indefinite when at least one eigenvalue is negative and at least one
eigenvalue is positive

Theorem

Page 58

Section 2.3

Proof

If A is symmetric, we can write A = PDP T and set ~y = P T~x, so ~x = P~y, and

Q = ~x TA~x (2.2)

= (P~y)TA(P~y), using ~x = P~y (2.3)

= ~y TP TAP~y (2.4)

= ~y TD~y, using A = PDP T (2.5)

=
X

�iy
2
i , because D is diagonal (2.6)

The entries of ~y are yi. Note that y2i is always non-negative, so for ~y 6= 0, the sign
of Q =

P
�iy2i will only depend on the values of �i. This implies, for example

that when �i > 0 for all i, that Q is positive definite.

2.3.4 Example 3: Quadratic Forms and Eigenvalues

Consider the quadratic form

Q = 4x2 + 2xy � 2y2 = ~x TA~x

The matrix of this quadratic form is

A =

4 1

1 �2

!

Calculating its eigenvalues reveals that � = 1±
p
10. Because the eigenvalues are

both positive and negative, our quadratic form is indefinite. Indeed, when we
plot this surface using MATLAB, we see that the surface does have values that
are both positive and negative.

Page 59

Section 2.4

2.3.5 Summary

In this section we explored geometric interpretations of the quadratic form

Q = ~xTA~x (2.7)

where A 2 R2⇥2 is symmetric. Then the set of ~x that satisfies this equation create
a surface. The surface, Q, could have a minimum or maximum value that may or
may not be unique. If all the eigenvalues of A are known, we have seen how we
can characterize the extreme values of a quadratic form give by Q = ~xTA~x.

Those students who have encountered quadratic surfaces in a multivariable cal-
culus course may have already seen the forms discussed in this section from a
different perspective. In such a course students may also consider more general
quadratic surfaces of the form

Q2 = ~xTA~x

Such forms can be used to create ellipsoids, cylinders, and other useful shapes
that are studied in calculus, but go beyond the scope of this course.

Page 60

Section 2.4

2.4 Constrained Optimization
Symmetric matrices can be found in certain optimization problems involving
quadratic functions. By applying some of the properties that symmetric matri-
ces have, we can develop algorithms and theorems to better understand and also
solve these optimization problems. The following example demonstrates how
symmetric matrices might arise in an optimization problem.

2.4.1 Example 1: Temperature on a Unit Sphere

Suppose that the temperature, Q, on the surface of the sphere, whose radius is
one, is given by

Q(~x) = 9x2
1 + 4x2

2 + 3x2
3, where x2

1 + x2
2 + x2

3 = ||~x||2 = 1

Our goals are to determine the location of the largest and smallest values of Q on
the surface of the sphere, and what the temperature is at these points. To do this,
we can first identify the largest value of Q on the sphere.

Q(~x) = ~x T

0

B@
9 0 0

0 4 0

0 0 3

1

CA ~x

= 9x2
1 + 4x2

2 + 3x2
3

 9x2
1 + 9x2

2 + 9x2
3

= 9(x2
1 + x2

2 + x2
3)

= 9k~xk2

= 9

Note that we are only considering points on the surface of the sphere, so k~xk2 = 1.
Notice also, by inspection, that Q is equal to 9 at the points (±1, 0, 0). We now
have both the maximum value of Q and where the maximum values of Q are
located. Therefore,

max{Q(~x) : ||~x|| = 1} = 9, and max occurs at ~x =

0

B@
±1

0

0

1

CA

Page 61

Section 2.4

A similar analysis yields the minimum value of Q.

min{Q(~x) : ||~x|| = 1} = 3, and min occurs at ~x =

0

B@
0

0

±1

1

CA

The diagram below shows our unit sphere, colored in a way that gives the tem-
perature of the sphere, with the hottest points being red, and the coldest points
being blue.

x1 x2

x3

Note that the hottest points are given by the points (±1, 0, 0) and the coldest
points at (0, 0,±1). You may have also noticed that the maximum and minimum
values of Q coincide with the eigenvalues of A. We will explore this connection
in the next section.

2.4.2 A Constrained Optimization Problem

We will now turn our attention to a more general problem of optimizing a func-
tion, Q, on a unit sphere. That is, we wish to identify the maximum or minimum
values of

Q(~x) = ~xTA~x, ~x 2 Rn, A 2 Rn⇥n,

subject to ||~x|| = 1. This is an example of a constrained optimization problem.
Also note that we may also want to know where these extreme values are ob-

Page 62

Section 2.4

tained. The following theorem gives us some insight on how these values can be
obtained.

If Q = ~xTA~x, A is a real n⇥ n symmetric matrix, with eigenvalues

�1 � �2 . . . � �n

and associated normalized eigenvectors ~u1, ~u2, . . . , ~un. Then, subject to the
constraint ||~x|| = 1, the maximum value of Q(~x) is �1, which is attained at
~x = ± ~u1. The minimum value of Q(~x) is �n, which is attained at ~x = ± ~un.

Theorem 2.4.1 Constrained Optimization

Proof

Suppose �1 is the largest eigenvalue of A and ~u1 is the corresponding unit eigen-
vector.

Q = ~x TA~x = ~y TD~y, using A = PDP T , ~x = P~y

=
X

�iy
2
i , because D is diagonal

X

�1y
2
i , because �1 is the largest eigenvalue

= �1

X
y2i

= �1 k~yk2 = �1, because k~yk2 = 1

This means that Q is at most �1. But Q = �1 at ±~u1 because

Q(±~u1) = ~u1
TA~u1 = ~u1

T (�1~u1) = �1

Example 2: Constrained Optimization with a Repeated Eigenvalue

In this example we will calculate the maximum and minimum values of Q(~x) =

~xTA~x = x2
1 + 2x2x3, ~x 2 R3, subject to ||~x|| = 1, and identify points where these

values are obtained.

Page 63

Section 2.4

For Q(~x) = x2
1 + 2x2x3, we have

Q = ~x TA~x, A =

0

B@
1 0 0

0 0 1

0 1 0

1

CA

By inspection, A has eigenvalues � ± 1 (don’t forget that an eigenvalue, �, is a
number that makes A� �I singular). For � = 1,

A� I =

0

B@
0 0 0

0 �1 1

0 1 �1

1

CA) ~v1 =

0

B@
1

0

0

1

CA ,~v2 =
1p
2

0

B@
0

1

1

1

CA

Because A is symmetric, the eigenvector for eigenvalue � = �1 must be orthogo-
nal to ~v1 and ~v2. So by inspection

~v3 =
1p
2

0

B@
0

1

�1

1

CA

Therefore, the minimum value of Q is �1, and is obtained at ±~v3. The maximum
value of Q is +1, which is obtained at any unit vector in the span of ~v1 and ~v2.

The image below is the unit sphere whose surface is colored according to the
quadratic from the previous example. Notice the agreement between our solution
and the image.

x1 x2

x3

x1 x2

x3

~v1

~v2

~v3

Page 64

Section 2.4

2.4.3 Orthogonality Constraints

Another useful constraint that we will use when constructing the singular value
decomposition of a matrix involves orthogonality.

Suppose Q = ~xTA~x, where A 2 Rn⇥n is symmetric and has eigenvalues
�1 � �2 . . . � �n and associated normalized eigenvectors ~u1, ~u2, . . . , ~un.
Then, subject to the constraints ||~x|| = 1 and ~x · ~u1 = 0, the maximum
value of Q(~x) is �2, which is attained at ~x = ~u2. The minimum value of
Q(~x) is �n, which is attained at ~x = ~un.

Theorem 2.4.2 Optimization with an Orthogonality Constraint

A proof would go beyond the scope of what we need for these notes, but it could
use a similar approach to the theorem that gives the maximum (or minimum) of
Q subject to k~xk = 1. We could start the proof with a change of variable so that
we could express Q using a diagonal matrix and an orthonormal basis for Rn.
We could then identify the second largest eigenvalue. The associated eigenvector
would be orthogonal to the eigenvector associated with the largest eigenvalue.

Example 3: Optimization with an Orthogonality Constraint

In this example our goal is to identify the maximum value of

Q(~x) = ~xTA~x, where A = AT , subject to ||~x|| = 1 and ~x · ~u1 = 0

where ~x 2 R3, A and its eigenvalues are

A =

0

B@
�1 1 0

1 �2 1

0 1 �1

1

CA , �1 = 0, �2 = �1, �3 = �3

and ~u1 is the eigenvector associated with �1, where

~u1 =
1p
3

0

B@
1

1

1

1

CA

Page 65

Section 2.4

The eigenvector associated with �2 is found using the usual process of finding a
vector in the nullspace of A� �2I .

A� �2I =

0

B@
0 1 0

1 �1 1

0 1 0

1

CA

By inspection, a vector in the nullspace will be
0

B@
1

0

�1

1

CA

But we need to satisfy the constraint k~xk = 1, so we will need to normalize our
eigenvector to ensure that it has length one. Our unit eigenvector is

~u2 =
1p
2

0

B@
1

0

�1

1

CA

This eigenvector gives one location where the maximum value of Q is obtained,
with the constraints

||~x|| = 1 and ~x · ~u1 = 0

The two locations where this maximum are obtained are (1, 0,�1) and (�1, 0, 1).
Evaluating Q at either of these points will give us Q = �2 = �1.

The image below is the unit sphere whose surface is colored according to the
quadratic from this example.

x1 x2

x3

~u1

~u2

The set of unit vectors that are orthogonal to ~u1 creates a circle, and the point on
that circle with the largest value of Q corresponds to ~u2.

Page 66

Section 2.4

Example 4: Optimization with an Orthogonality Constraint, a Repeated Eigen-
value Case

In this example we will identify the maximum value of Q(~x) = ~xTA~x, ~x 2 R3,
subject to ||~x|| = 1 and to ~x · ~u1 = 0, where

Q(~x) = x2
1 + 2x2x3, ~u1 =

0

B@
1

0

0

1

CA

Noting that this example uses the same quadratic as in Example 2, we know that
~u1 is an eigenvector associated with the largest eigenvalue, � = 1. The next largest
eigenvalue is � = �1, which was a repeated eigenvalue. Any unit vector in the
span of ~u2 and ~u3 is also an eigenvector with eigenvalue �2 = �1. If, for example,
~w is a unit vector in the span of ~u2 and ~u3, then Q(~w) = �2 = �1 and ~w will
be orthogonal to ~u1. Therefore the maximum value of Q(~x) = ~xTA~x, subject to
||~x|| = 1 and to ~x · ~u1 = 0 is �2 = �1.

2.4.4 Summary

In this section we introduced two constrained optimization problems. Our first
problems was to identify the maximum/minimum values (and where they are
located) of

Q(~x) = ~xTA~x, where A = AT , subject to ||~x|| = 1.

We saw that the maximum/minimum values are given by eigenvalues of A, and
that the locations of these extreme values are given by the unit eigenvectors of A.

We then explored a related constrained optimization problem. We extended our
results from the previous constrained optimization problem to identify the max-
imum/minimum values of Q, and where they are located, subject to two con-
straints. If, for example, ~u1 is the eigenvector corresponding to the largest eigen-
value, then our goal was to optimize

Q(~x) = ~xTA~x, where A = AT , subject to ||~x|| = 1 and ~x · ~u1 = 0

Page 67

Section 2.5

Again we saw that the maximum/minimum values are given by eigenvalues of
A. And we saw that the corresponding locations of these extreme values are
given by unit eigenvectors of A, but that we needed to use the second largest
eigenvalue. These results could then be extended to handle cases with repeated
eigenvalues, to add additional orthogonality constraints, or to identify minimum
values of Q with orthogonality constraints.

Students who have already completed a multivariable calculus course may rec-
ognize constrained optimization problems when working with Lagrange Mul-

tipliers, which would give a more general framework to approach constrained
optimization problems. Lagrange Multipliers are not explored in this particular
course. But we will make use of the results in this section when developing the
singular value decomposition (SVD) of a matrix.

Page 68

Section 2.5

2.5 Singular Values
If A is any real m ⇥ n matrix, what is the maximum that kA~xk could be equal to,
given that ~x has to be a unit vector? It turns out that the answer to this question
reveals an application of a constrained optimization problem that we explored in
a previous sections, and in the process of answering it we will introduce what are
known as the singular values of a matrix and their properties. Singular values
are at the heart of many applications of linear algebra. Indeed, singular values
play an important role in the singular value decomposition of a matrix, which
has many applications.

We will introduce the SVD in a later section of these notes. In this section we
motivate their definition and properties by exploring examples involving linear
transforms.

2.5.1 Example 1: A Linear Transform on the Unit Circle

Consider the linear transform ~x ! A~x where

A =
1p
2

1 �1

1 1

!
2
p
2 0

0
p
2

!
=

2 �1

2 1

!

The set of all unit vectors in R2 will form a circle, and this particular transform
will map these unit vectors to points on another curve, as shown in Figure (2.7).
To help illustrate the problem we are working on, the diagram also shows how a
unit vector, ~v is mapped to A~v, where

~v =
1p
2

1

1

!
! A~v =

1p
2

1

3

!

There are two questions we want to ask. Is there a unit vector, ~v, that will maxi-
mize the length of A~v? And what would A~v be equal to for that particular vector?
In other words, which unit vector, ~v, maximizes ||A~v||, and what is ||A~v|| equal
to?

Page 69

Section 2.5

x1

x2
~v = 1p

2

1

1

! A~v = 1p
2

1

3

!

multiply by A

x1

x2

Figure 2.7: The linear transform ~v ! A~v maps the unit circle to a curve in R2. An
example of one unit vector, ~v, and its image, A~v, are also shown.

To answer these questions, it is helpful to use the idea that location of the max-
imum of kA~vk will be at the same location as the maximum of kA~vk2, subject to
our constraint that ~x must be a unit vector. Using this idea, we can then write the
squared length as

kA~vk2 = ~v TATA~v.

But ATA is symmetric. Which means that we are now working with a familiar
optimization problem. We know from a previous section that because A is sym-
metric that we can use the eigenvalues and eigenvectors of ATA to 1) identify the
maximum value of kA~vk2, and 2) identify where the maximum is located. First
need to compute ATA.

ATA =

2 2

�1 1

!
2 �1

2 1

!
=

8 0

0 2

!
) � = 8, 2

In this case, ATA happens to be diagonal, so the eigenvalues can be obtained by
inspection. The largest eigenvalue is 8.

max
k~vk=1

kA~vk2 = 8

Taking the square root of this gives us the maximum value that we need, which
we denote by �1.

�1 = max
k~vk=1

kA~vk =
p
8.

But what is the vector ~v that corresponds to this maximum? Let the unit eigenvec-
tor corresponding to the largest eigenvalue is the vector be ~v1, which maximizes

Page 70

Section 2.5

kA~vk over all unit vectors ~v.

ATA� �I =

0 0

0 �6

!
) ~v1 =

1

0

!
.

Thus the maximum value we found is obtained at the point (1, 0). But of course
we could also use (�1, 0), either point will maximize the length of A~v.

If we also wanted to determine the smallest value of kA~vk subject to k~vk = 1, we
would use the eigenvector that is associated with the smallest eigenvalue of ATA,
which is

~v2 =

0

1

!

Therefore, the minimum value of kA~vk is

�2 = min
k~vk=1

kA~vk =
p
2, ~v2 =

0

1

!

kA~v2k is the square root of the smallest eigenvalue of ATA, which is
p
2.

The maximum and minimum lengths of kA~vk are denoted by the Greek letter �,
so that �1 =

p
�1 =

p
8, and �2 =

p
�2 =

p
2. They are known as the singular

values of A, and Figure (2.8) shows how they are related to the range of the linear
transform ~x ! A~x. We give a definition of the singular values of a matrix in the
next section.

x1

x2

~v1

~v2

multiply by A
x1

x2

A~v1A~v2

�1
�2

Figure 2.8: The singular values �1 and �2 are lengths. They give the largest and
smallest values of kA~vk subject to k~vk = 1, respectively. The vectors A~v1 and A~v2
give the locations of these extreme values.

Page 71

Section 2.5

2.5.2 Singular Values

The singular values, �j , of any m⇥ n real matrix A are the square roots of the
eigenvalues of ATA, so that �i =

p
�i for 1 i n, where �i is an eigenvalue

of ATA. Singular values are also ordered from largest to smallest, so that

�1 =
p
�1 � �2 =

p
�2 � · · · � �n =

p
�n.

Definition

Because we are relying on a square root to define the singular values of a ma-
trix, we might wonder whether the eigenvalues of ATA could be negative, which
would imply that singular values can be complex. But, it turns out that the eigen-
values of ATA can never be negative because of the following theorem.

The eigenvalues of ATA are real and non-negative.

Theorem

Proof: We have already shown that the eigenvalues of any symmetric matrix are
real (see Appendix (3.1)). Also recall that ~vTj ~vj = ~vj · ~vj = k~vjk2 = 1 because ~vj are
unit eigenvectors of ATA. Then

kA~vjk2 = (A~vj)
TA~vj = ~vjA

TA~vj = �j~v
T
j ~vj = �j � 0.

Therefore the eigenvalues of ATA must be real and non-negative. And the singu-
lar values of A, which are the square roots of the eigenvalues, must also be real
and non-negative. ⌅

2.5.3 Singular Values Represent Lengths

We saw in Example 1 how the singular values of the 2 ⇥ 2 matrix A represented
the lengths of A~v1 and A~v2. We can extend this concept to any m⇥ n matrix.

When showing that the eigenvalues of ATA are non-negative, we saw that

||A~vi||2 = �i

Page 72

Section 2.5

Therefore,
||A~vi|| = �i

This is an important point: the singular value �i is the length of A~vi for i =

1, 2, . . . , n. Moreover, our proof relied on the fact that because the matrix ATA

is symmetric with non-negative eigenvalues �1 � �2 � · · · � �n � 0, the eigen-
vectors of ATA, the set {~v1, . . . ,~vn}, forms an orthogonal basis for Rn. In other
words, not only is each �i is the length of A~vi, but the lengths are in orthogonal
directions.

For example, the largest singular value of A gives us the maximum length of A~v
subject to k~vk = 1.

�1 = max
k~vk=1

kA~vk

The second largest eigenvalue of a symmetric matrix gives the maximum of kA~vk
subject to

k~vk = 1, ~v · ~u1 = 0

The second largest eigenvalue is �2. Thus, �2. Likewise with the remaining eigen-
values.

Example 2: Singular Values of a Matrix with Orthogonal Columns

Suppose T (~x) = A~x is a linear transform and A is the matrix

A =

0

B@
2 0 0

0
p
2/2

p
2/4

0
p
2/2 �

p
2/4

1

CA .

The maximum and minimum values of kA~xk are determined from the eigenval-
ues of ATA. And ATA is the matrix

ATA =

0

B@
4 0 0

0 1 0

0 0 1/4

1

CA

This matrix happens to be diagonal because A has orthogonal columns. So the
eigenvalues can be determined by inspection and are �1 = 4, �2 = 1, and �3 = 1/4.
Their square roots are the singular values of A, which are

�1 =
p
�1 = 2, �2 =

p
�2 = 1, �1 =

p
�3 = 1/2

Page 73

Section 2.6

Shown below, on the left, is the unit sphere in R3. The vectors that make up the
unit sphere are transformed by T : each unit vector ~v is transformed to A~v. The
output of the transform is shown on the right.

Figure 2.9: The transform of the unit sphere creates an ellipsoid in R3, whose size
is described by the singular values of A.

The maximum value of kA~vk subject to k~vk2 = 1 is �1 = 2, which is why the
ellipsoid on the right intersects the x1 axis at (2, 0, 0) and at (�2, 0, 0). Notice we
have chosen the first eigenvalue to be the largest and the last to be the smallest,
which is consistent with the convention that the singular values are arranged in
decreasing order.

2.5.4 Summary

In this section we saw how the singular values of any m⇥ n real matrix A are the
square roots of the eigenvalues of ATA. They are real and non-negative, arranged
in decreasing order, and are related to the lengths of kA~xk for k~xk = 1. In the
next section we will see how they can be used to construct the singular value
decomposition.

Page 74

Section 2.6

2.6 The SVD
The Singular Value Decomposition (SVD) is a factorization that expresses a ma-
trix as a product of three matrices. The decomposition gives us useful information
about the subspaces that its rows and columns span, which are used in important
applications in data science. In this section, we build on the previous section that
introduced singular values to define the singular vectors of a matrix, and show
howe can use them to construct the SVD of a matrix.

Earlier in the course we introduced the four fundamental subspaces of a matrix.
Recall that for any A 2 Rm⇥n, the orthogonal complement of RowA is NullA, and
the orthogonal complement of ColA is NullAT . The relationships between these
subspaces in described in Figure (2.10).

RowA

NullA

ColA

NullAT

Rn Rm

Figure 2.10: The four fundamental subspaces of an m⇥ n matrix A.

Our introduction to the SVD will begin with showing how the the eigenvectors
of ATA can be used construct an orthonormal bases for NullA and its orthogonal
compliment, RowA. With a little more work, we can also show how we can use
the eigenvectors can be used to calculate bases for ColA and its orthogonal com-
pliment. But we will first look at the bases for NullA and RowA, which will give
us the right-singular vectors.

Page 75

Section 2.6

2.6.1 Orthogonal Bases for RowA and NullA

Suppose A is an m⇥n matrix, and ~vi are n orthonormal eigenvectors of ATA,
ordered so that their corresponding eigenvalues satisfy �1 � �2 � . . . � �n.
Suppose also that A has r non-zero singular values, r n. Then the set of
vectors

{~vr+1,~vr+2, . . . ,~vn}

is an orthonormal basis for NullA, and the set

{~v1,~v2, . . . ,~vr}

is an orthonormal basis for RowA, and rankA = r. The vectors {~vi} for i n

are the right singular vectors of A.

Theorem: The Right Singular Vectors

Proof

First we will show that the right singular vectors ~vi will form an orthonormal ba-
sis for NullA if i > r. Recall that for a set of vectors to form an orthogonal basis for
a subspace that they must be in that space, span the space, be independent, and
mutually orthogonal.Each ~vi is an eigenvector of ATA. Eigenvectors cannot be
zero vectors, so it is possible for them to linearly independent. Moreover, ~vi must
be orthogonal and span Rn because they are eigenvectors of a symmetric matrix,
ATA. Eigenvectors of symmetric matrices that correspond to distinct eigenvalues
are orthogonal. Moreover if any eigenvalues of ATA are repeated then we can use
Gram-Schmidt to construct an orthogonal basis for the eigenspace. So the entire
set of right singular vectors form an orthogonal basis for Rn.

If the rank of A is less than n, then there must be non-zero vectors ~x so that A~x = ~0.
Recall also that the singular values are real, non-negative, arranged in decreasing
order, and are the lengths of A~vi.

kA~vik = �i

So if kA~vik = 0 for i > r, then ~vi 2 NullA for i > r. And if kA~vik 6= 0 for i r,
then ~vi cannot be in NullA for i r, they must be in (NullA)? = RowA, because
{~vi} is an orthonormal set.

Page 76

Section 2.6

Thus, our basis for NullA is the set

{~vr+1,~vr+2, . . . ,~vn}

and our basis for RowA is the set

{~v1,~v2, . . . ,~vr}

We should also explain why rankA = r. There are r vectors in our basis for RowA.
The number of vectors in a basis for a subspace is the dimension of the subspace.
And recall that dim(RowA) = dim(ColA) = rankA. Thus, rankA is the number of
non-zero singular values, r. ⌅

We will next look at the bases for ColA and (ColA)?, which will give us the left
singular vectors.

Orthogonal Bases for ColA and NullAT

Suppose {~vi} are the n orthonormal eigenvectors of ATA, ordered so that
their corresponding eigenvalues satisfy �1 � �2 � . . . � �n. Suppose
also that A has r non-zero singular values. Then

{A~v1, A~v2, . . . , A~vr}

are an orthogonal basis for ColA. The vectors {~ui} for i m are the left

singular vectors of A.

Theorem: The Left Singular Vectors

Proof

The product A~vi is just a linear combination of the columns of A weighted by the
entries of ~vi, so A~vi is a vector in ColA. A~vi and A~vj are orthogonal for i 6= j.

(A~vi) · (A~vj) = ~vTi A
TA~vj = �j~vi · ~vj = 0

For i r = rankA, A~vi are orthogonal and non-zero. So they must also indepen-
dent, and thus they must form an orthogonal basis for ColA. Note that for i > r,
A~vi = ~0 because ~vi 2 NullA for i > r.

Page 77

Section 2.6

Summary: The Four Fundamental Spaces

Suppose ~vi are orthonormal eigenvectors for ATA, and

~ui =
1

�i
A~vi for i r = rankA, �i = kA~vik.

Then we have the following orthogonal bases for any m⇥ n real matrix A.

• RowA: the vectors ~v1, . . . ,~vr are an orthonormal basis for RowA. They can
be constructed by identifying the eigenvectors of ATA for 1 i r n.

• NullA: if rankA < n, then ~vr+1, . . . ,~vn is an orthonormal basis for NullA.
They can be found by computing the eigenvectors of ATA for r < i n.

• ColA: the vectors ~u1, . . . , ~ur are an orthonormal basis for ColA. They can be
computed using �i~ui = A~vi for 1 i r.

• NullAT : the vectors ~ur+1, . . . , ~un are an orthonormal basis for NullAT .

To construct a basis for (ColA)?, we could identify any m � r independent non-
zero vectors in (ColA)? and then use Gram-Schmidt to create an orthogonal basis
from them. We will explore that process in an example later on in this section.

2.6.2 The SVD

Having now defined singular values and singular vectors, we are now ready to
give a definition of the SVD. Applications of the SVD are given in Section (2.7).

Page 78

Section 2.6

Suppose A is an m ⇥ n matrix with singular values �1 � �2 � · · · � �n

and m � n. Then A has the decomposition A = U⌃V T where

⌃ =

D

0m�n,n

!
, D =

0

BBBB@

�1 0 . . . 0

0 �2 . . .
...

...
...

0 0 . . . �n

1

CCCCA

U is a m ⇥ m orthogonal matrix, and V is a n ⇥ n orthogonal matrix. If
m < n, then ⌃ =

⇣
D 0m,n�m

⌘
with everything else the same.

Theorem: Singular Value Decomposition

The proof that we can factor any real matrix as A = U⌃V T is similar to one often
used to prove that any n⇥n matrix with n linearly independent eigenvectors can
be diagonalized. We first construct the matrix V from the right singular vectors,
by placing them into a matrix as follows.

V = (~v1 ~v2 . . .~vn)

Then AV becomes

AV = A(~v1 ~v2 . . . ~vn) = (A~v1 A~v2 . . . A~vn)

But �i~ui = A~vi, and �i = kA~vik. So

AV =
⇣
�1~u1 �2~u2 · · · �n~un

⌘
= (~u1 ~u2 . . . ~un)

0

BB@

�1

. . .
�n

1

CCA = U⌃

Thus, AV = U⌃, or A = U⌃V T . ⌅

2.6.3 A Procedure for Constructing the SVD of A

Putting together our definitions for the singular values and singular vectors of a
matrix we arrive at a procedure for computing the SVD of a matrix. Suppose A is
m⇥ n and has rank r.

Page 79

Section 2.6

1. Compute the squared singular values of ATA, which are �2
i . Use them to

construct the m⇥ n matrix ⌃.

2. Compute the right singular vectors of A, which are ~vi for i = 1, 2, . . . , n.
Then use these vectors to form V .

3. Compute an orthonormal basis for ColA using

~ui =
1

�i
A~vi, i = 1, 2, . . . r

If r < m, extend the set {~ui} to form an orthonormal basis for Rm and use
the basis to form U .

A process for extending the orthonormal basis for Rm is explored in the examples
below.

Example 1: Constructing the SVD of a 4⇥2 Matrix with Independent Columns

In this example we will construct the singular value decomposition for

A =

0

BBB@

2 0

0 �3

0 0

0 0

1

CCCA

We first need to identify the singular values of A and construct ⌃. The singular
values of A are the eigenvalues of ATA.

ATA =

4 0

0 9

!
) �1 = 9, �2 = 4

The positive square roots of the eigenvalues are the singular values.

�1 = 3, �2 = 2

Don’t forget that, by convention, �1 is the largest singular value of A. Using the
singular values of A we can then construct ⌃.

�1 = 3, �2 = 2) ⌃ =

0

BBB@

3 0

0 2

0 0

0 0

1

CCCA

Page 80

Section 2.6

Next we construct the right-singular vectors {~vi} so that we can form matrix V .

ATA� �1I =

�5 0

0 0

!
) ~v1 =

0

1

!

ATA� �2I =

0 0

0 5

!
) ~v2 =

1

0

!

With the right singular vectors ~v1 and ~v2 we can form V .

V =
⇣
~v1 ~v2

⌘
=

0 1

1 0

!

Next we construct left-singular vectors {~ui} using ~ui = 1
�i
A~vi for i = 1, 2, . . . r.

Each ~ui will be a unit vector in R4.

~u1 =
1

�1
A~v1 =

1

3

0

BBB@

2 0

0 �3

0 0

0 0

1

CCCA

0

1

!
=

0

BBB@

0

�1

0

0

1

CCCA

~u2 =
1

�2
A~v2 =

1

2

0

BBB@

2 0

0 �3

0 0

0 0

1

CCCA

1

0

!
=

0

BBB@

1

0

0

0

1

CCCA

To construct the SVD of A, we must construct the last two columns of U . In this
example, A has rank r = 2 and U will be a 4 ⇥ 4 orthogonal matrix. Because
the columns of U must be orthonormal, and ~u1 and ~u2 were standard vectors, by
inspection we can set the last two columns to be

~u3 =

0

BBB@

0

0

1

0

1

CCCA
, ~u4 =

0

BBB@

0

0

0

1

1

CCCA

Note that ~u3 and ~u4 are unit vectors, and that {~ui} are orthonormal. We could
have chosen other vectors for ~u3 and ~u4.

Page 81

Section 2.6

We have the SVD of A.

A =

0

BBB@

2 0

0 �3

0 0

0 0

1

CCCA
=

0

BBB@

0 1 0 0

�1 0 0 0

0 0 1 0

0 0 0 1

1

CCCA

0

BBB@

3 0

0 2

0 0

0 0

1

CCCA

0 1

1 0

!

Example 2: The SVD of a 3⇥ 2 Matrix with Rank 1

In this example we will construct the singular value decomposition of

A =

0

B@
1 �1

�2 2

2 �2

1

CA

The singular values are found by computing the eigenvalues of ATA.

ATA =

1 �2 2

�1 2 �2

!0

B@
1 �1

�2 2

2 �2

1

CA =

9 �9

�9 9

!

Recall that singular matrices have eigenvalue 0 and the trace of a matrix is the
sum of its eigenvalues. So �1 = 9 + 9 = 18 and �2 = 0. The positive square roots
of the eigenvalues are the singular values. �1 is the largest singular value, and
�1 =

p
18, �2 = 0.

Using the singular values we can construct ⌃.

�1 =
p
18 = 3

p
2, �2 = 0) ⌃ =

0

B@
3
p
2 0

0 0

0 0

1

CA

Next we construct the right-singular vectors {~vi} and form V .

ATA� �1I =

�9 �9

�9 �9

!
) ~v1 =

1p
2

1

�1

!

ATA� �2I =

9 �9

�9 9

!
) ~v2 =

1p
2

1

1

!

Page 82

Section 2.6

Thus V is the matrix

V =
1p
2

1 1

�1 1

!

Next we construct left-singular vectors {~ui}. The rank of A is r = 1, so we may
use

~ui =
1

�i
A~vi

for i = 1. Vector ~u1 will be a unit vector in R3.

~u1 =
1

�1
A~v1 =

1

3
p
2

0

B@
1 �1

�2 2

2 �2

1

CA

1/
p
2

�1/
p
2

!
=

1

3 · 2

0

B@
2

�4

4

1

CA =
1

3

0

B@
1

�2

2

1

CA

How can we construct the remaining left-singular vectors to construct U? In this
example, A has rank r = 1, and U will be a 3⇥3 orthogonal matrix. By inspection,
two vectors orthogonal to ~u1 are

~x2 =

0

B@
2

1

0

1

CA , ~x3 =

0

B@
�2

0

1

1

CA

Because ~u1 2 ColA, these two vectors are in (ColA)?, but ~x2 and ~x3 are not or-
thogonal. U is an orthogonal matrix, so how might we create an orthogonal basis
for (ColA)? using ~x2 and ~x3? The Gram-Schmidt procedure.

ū2 = ~x2 =

0

B@
2

1

0

1

CA

ū3 = ~x3 �
~x3 · ū2

ū2 · ū2
ū2 =

0

B@
�2

0

1

1

CA� �4

5

0

B@
�2

0

1

1

CA =
1

5

0

B@
�2

4

�5

1

CA

Normalizing these vectors yields the remaining left singular vectors.

~u2 =
1p
5

0

B@
2

1

0

1

CA , ~u3 =
1p
45

0

B@
�2

4

�5

1

CA

Page 83

Section 2.7

Thus, A = U⌃V T , where

U =

0

B@
1/3 2/

p
5 �2/

p
45

�2/3 1/
p
5 4/

p
45

2/3 0 �5/
p
45

1

CA

⌃ =

0

B@
3
p
2 0

0 0

0 0

1

CA

V =
1p
2

1 1

�1 1

!

2.6.4 Summary

In this section we introduced the left and right singular vectors and gave a def-
inition of the full SVD for any m ⇥ n matrix with real entries. A procedure for
computing the SVD was given, which can require applying Gram-Schmidt to
construct a basis for ColA? to construct U .

Page 84

Section 2.7

2.7 Applications of The SVD
The SVD has been applied to many modern applications in CS, engineering, and
mathematics. In this section we will use the SVD to construct bases for the four
fundamental subspaces of a matrix, characterize how errors in the entires of A
could lead to errors when solving A~x = ~b, and construct a spectral decomposition
of a matrix.

2.7.1 The Condition Number of a Matrix

In some applications of linear algebra, entries of A and contain errors. The condi-
tion number of a matrix describes the sensitivity that any approach to determin-
ing solutions to A~x = ~b might have to errors in A. These errors could arise from
the way the entries of A are stored, or from the way that the entries of A were
determined.

Suppose A is an invertible n⇥ n matrix. The ratio

 =
�1

�n

is the condition number of A, where �1 is the largest singular value of A,
and �n is the smallest.

Definition

The larger the condition number, the more sensitive the system is to errors.

Example 1: The Condition Number of a 2⇥ 2 Matrix

Suppose A =

2 �1

2 1

!
. We found in an earlier example that �1 =

p
8, �2 =

p
2.

Therefore, the condition number of A is

 =
�1

�n
=

p
8p
2
= 2

Page 85

Section 2.7

Example 2: The Condition Number of a Matrix with Orthogonal Columns

Suppose h > 0 is any positive real number and A is the matrix

A =

0

B@
2 h 1

1 0 �4

2 �h 1

1

CA

This matrix happens to have orthogonal columns, so ATA will be diagonal.

ATA =

0

B@
9 0 0

0 2h2 0

0 0 18

1

CA

Then by inspection the eigenvalues of ATA are 18, 9 and 2h2. If h is a small posi-
tive number close to zero, the condition number is the ratio

 =
�1

�3
=

p
18p
2h2

=
3

h

As h tends to zero �3 also tends to zero, and tends to infinity. This suggests that
when h is very small, the process of solving the linear system A~x = ~b would be
sensitive to any errors made in calculating the solution. And that there could be
a relationship between how close A is to a singular matrix and the sensitivity to
errors in calculating the solution to A~x = ~b. A more detailed discussion would
certainly go beyond the scope of our discussion.

2.7.2 The SVD and the Four Fundamental Subspaces

Suppose ~vi are orthonormal eigenvectors for ATA, and

~ui =
1

�i
A~vi for i r = rankA, �i = kA~vik.

Then we have the following bases for any m⇥ n real matrix A.

• ~v1, . . . ,~vr is an orthonormal basis for RowA.

• ~vr+1, . . . ,~vn is an orthonormal basis for NullA.

• ~u1, . . . , ~ur is an orthonormal basis for ColA.

• ~ur+1, . . . , ~um is an orthonormal basis for ColA? = NullAT .

Page 86

Section 2.7

Example 3: Constructing Orthonormal Bases for the Fundamental Subspaces

Suppose A is a 4⇥ 5 matrix whose SVD is given below.

A = U⌃V T =

0

BBB@

0 1 0 0

0 0 1 0

0 0 0 �1

�1 0 0 0

1

CCCA

0

BBB@

5 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 0 0

1

CCCA

0

BBBBBB@

0 0
p
0.8 0 �

p
0.2

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0
p
0.8 0

p
0.2

1

CCCCCCA

There are exactly three non-zero singular values, so r = rankA = 3. The first three
columns of V are a basis for RowA and the last two columns of V (or rows of V T)
are a basis for NullA. The first three columns of U are a basis for ColA, and the
remaining column of U are a basis for (ColA)?.

2.7.3 The Spectral Decomposition of a Matrix

The SVD can be also used to approximate any m⇥ n real matrix with what is de-
fined as the spectral decomposition. Note that a similar decomposition for sym-
metric matrices that uses the orthogonal decomposition of a matrix is described
in Appendix 3.2.

For any real m⇥n matrix A with rank r and SVD A = U⌃V T

we can write

A = U⌃V T =
rX

i=1

�i~ui~vi
T = �1~u1~v

T
1 + �2~u2~v

T
2 + . . .+ �r~ur~v

T
r

Vectors ~ui,~vi are the ith columns of U and V respectively.

Spectral Decomposition

Here we give a short explanation on why A has the decomposition

A = �1~u1~u
T
1 + · · ·+ �n~un~u

T
n =

nX

i=1

�i~ui~u
T
i

Page 87

Section 2.7

If the columns of ⌃ are ~s1,~s2, · · · ,~sn, then, using the definition of matrix multipli-
cation,

U⌃ = U
⇣
~s1 ~s2 · · · ~sn

⌘
=
⇣
U~s1 U~s2 · · · U~sn

⌘

Recall that a matrix times a vector is a linear combination of the columns of the
matrix weighted by the entries of the vector. Column i of the product U⌃ is

U⌃i = U

0

BBBBBBBBB@

0
...
0

�i

0
...

1

CCCCCCCCCA

= 0 + 0 + . . .+ 0 + �i~ui + 0 + . . . = �i~ui

Therefore, the columns of PD are �i~ui. We can now simplify our expression for
A = PDP T to a product of two n⇥ n matrices. A can be expressed as

A = U⌃V T =
⇣
�1~u1 �2~u2 · · · �n~un

⌘

0

BBBB@

~vT1
~vT2
...
~vTn

1

CCCCA

Using the column-row expansion for the product of two matrices, this becomes

A = �1~u1~v
T
1 + · · ·+ �n~un~v

T
n =

nX

i=1

�i~ui~v
T
i

The row-column expansion for the product of two matrices is a way of defining
matrix multiplication. Note that each term in this sum is a rank 1 matrix. In
applications of linear algebra, �i can become sufficiently small, allowing us to
approximate A with a small number of rank 1 matrices.

Example 4: The Spectral Decomposition of a 4⇥ 2 Matrix

Suppose A has the following SVD.

A =

0

BBBB@

2 0

0 �3

0 0

0 0

1

CCCCA
=

0

BBBB@

0 1 0 0

�1 0 0 0

0 0 1 0

0 0 0 1

1

CCCCA

0

BBBB@

3 0

0 2

0 0

0 0

1

CCCCA

0 1

1 0

!

Page 88

Section 2.7

The spectral decomposition of A is as follows.

A =
rX

s=1

�s~us~v
T
s

= 3

0

BBB@

0

�1

0

0

1

CCCA

⇣
0 1

⌘
+ 2

0

BBB@

1

0

0

0

1

CCCA

⇣
1 0

⌘

= 3

0

BBB@

0 0

0 �1

0 0

0 0

1

CCCA
+ 2

0

BBB@

1 0

0 0

0 0

0 0

1

CCCA

Example 5: The Spectral Decomposition of a 4⇥ 5 Matrix

In this example we construct and discuss the spectral decomposition of the 4⇥ 5

matrix

A =

0

BBB@

1 �2 2 �2 �4

0 2 0 2 4

2 1 4 1 2

2 0 4 0 0

1

CCCA

With some help from MATLAB we obtain the eigenvalues of ATA and the singu-
lar values of A.

�1 = 54) �1 =
p
54 = 3

p
6 ⇡ 7.3485

�2 = 45) �2 =
p
45 = 3

p
5 ⇡ 6.7082

The script used to compute the eigenvalues are below.

~u1 =
1

3

0

BBB@

2

�2

�1

0

1

CCCA
, ~u2 =

1

3

0

BBB@

�1

0

�2

�2

1

CCCA
, ~v1 =

1p
6

0

BBBBBB@

0

�1

0

�1

�2

1

CCCCCCA
, ~v2 =

1p
5

0

BBBBBB@

�1

0

�2

0

0

1

CCCCCCA

The MATLAB script that computes the eigenvalues of ATA and the SVD of A is
shown below.

Page 89

Section 2.7

A = [1 -2 2 -2 -4;0 2 0 2 4;2 1 4 1 2;2 0 4 0 0];

AA = A’*A; % compute A^TA

L = eig(AA); % L will be a vector containing the eigenvalues of A^TA

[U,S,V] = svd(A); % this will give us the SVD of matrix A

MATLAB Script

Using the SVD of A we can construct the spectral decomposition of A is as fol-
lows. Note that in this case that the number of non-zero singular values is r =

rankA = 2.

A =
rX

s=1

�s~us~v
T
s

= �1~u1~v
T
1 + �2~u2~v

T
2

=
3
p
6

3
p
6

0

BBB@

2

�2

�1

0

1

CCCA

⇣
0 �1 0 �1 �2

⌘
+

3
p
5

3
p
5

0

BBB@

�1

0

�2

�2

1

CCCA

⇣
1 0

⌘

=

0

BBB@

2

�2

�1

0

1

CCCA

⇣
0 �1 0 �1 �2

⌘
+

0

BBB@

�1

0

�2

�2

1

CCCA

⇣
�1 0 �2 0 0

⌘

Notice how this representation of A only requires two vectors with four entries
and two vectors with 5 entries each, for a total of 18 numbers. The original matrix
is 4⇥5, which requires 20 numbers. The spectral decomposition happened to give
us a slightly more concise representation of A. But we were only able to obtain
this result because there a few non-zero singular values. Had there been three or
four non-zero singular singular values, the spectral decomposition would have
not been as concise. More generally, the reduction in the amount of data needed
to represent a matrix will be greater with larger matrices that also have a small
number of non-zero singular values.

Page 90

Section 2.7

2.7.4 Summary

In this section we introduced three applications of the SVD and singular values.

• The four fundamental subspaces of a matrix can be calculated using the left
and right singular vectors.

• The condition number of a square invertible matrix, = �1
�n

, characterizes
the sensitivity to solving A~x = ~b to errors in A.

• The spectral decomposition of a matrix can be calculated using its SVD.

A similar decomposition for symmetric matrices that uses the orthogonal decom-
position of a matrix is described in Appendix 3.2.

While there are numerous applications of the SVD, many of them would be be-
yond the scope of this course and would require introducing topics and problems
that would go beyond the scope of a linear algebra course.

Page 91

Chapter 3

Appendices

3.1 Symmetric Matrices Have Real
Eigenvalues

First we will show that when A is a real symmetric matrix that for any x 2 Cn

that the quantity Q = x̄TAx is real.

To show that Q is real, we will make use of the complex conjugate. We use the
overbar notation to denote complex conjugate, so if a and b are real, then the
complex number z = a+ ib has complex conjugate z = a� ib. Moreover, if z = z,
then b = 0 which implies that z must be a real number. We use this idea to show
that Q = Q.

Q = xTAx

= x T Ax

= xT Ax

= xTAx

The last step uses the assumption that A is real, so that A = A. But Q is a number,
so Q

T
= Q and

Q = (Q)T = (xTAx)T = xT (xTA)T = Q

92

Section 3.2

Because Q = Q, we have shown that Q = xTAx is real for any x 2 Cn and real
symmetric n⇥ n matrix A.

Next we use this result to show that when x = vj is an eigenvector of A that Q is
equal to an eigenvalue of A.

Q = x TAx = vj
TAvj = vj

T (�jvj) = �jvj · vj

But vj · vj is real and Q is real, so �j must also be real.

Page 93

Section 3.2

3.2 The Spectral Decomposition of
a Symmetric Matrix

We have seen how any symmetric matrix can be diagonalized as A = PDP T ,
where

A = PDP T =
⇣
~u1 · · · ~un

⌘
0

BB@

�1 · · · 0
...
0 · · · �n

1

CCA

0

BB@

~uT
1
...
~uT
n

1

CCA

The columns of P are the eigenvectors of A, and the entries on the main diag-
onal of D are the corresponding eigenvalues. Following the same proof for the
spectral decomposition of a matrix using the SVD, it can be shown that A has the
decomposition

A = �1~u1~u
T
1 + · · ·+ �n~un~u

T
n =

nX

i=1

�i~ui~u
T
i

We will give a brief explanation on why A has the decomposition given below.

A = �1~u1~u
T
1 + · · ·+ �n~un~u

T
n =

nX

i=1

�i~ui~u
T
i

We assume that we can write A = PDP T . If the columns of D are d1, d2, . . . , dn,
then, using the definition of matrix multiplication,

PD =
⇣
Pd1 Pd2 . . . Pdn

⌘

Recall that a matrix times a vector is a linear combination of the columns of the
matrix weighted by the entries of the vector. Column i of PD is

Pdi = P

0

BBBBBBBBB@

0
...
0

�i

0
...

1

CCCCCCCCCA

= 0 + 0 + . . .+ 0 + �i~ui + 0 + . . . = �i~ui

Page 94

Section 3.2

Therefore, the columns of PD are �i~ui. We can now simplify our expression for
A = PDP T to a product of two n⇥ n matrices.

Thus, A can be expressed as follows.

A = PDP T =
⇣
�1~u1 �2~u2 · · · �n~un

⌘

0

BBBB@

~uT
1

~uT
2
...
~uT
n

1

CCCCA

Using the column-row expansion for the product of two matrices, this becomes

A = �1~u1~u
T
1 + · · ·+ �n~un~u

T
n =

nX

i=1

�i~ui~u
T
i

The row-column expansion for the product of two matrices is a way of defining
matrix multiplication.

Page 95

