Sample Midterm 2A, Math 1554

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name _____ Last Name _____

GTID Number: _____

Student GT Email Address: @gatech.edu

Section Number (e.g. A4, QH3, etc.) _____ TA Name _____

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will not be collected and will not be graded.

1. (10 points) Indicate true if the statement is true, otherwise, indicate false.

	true	false
a) If a square matrix is not invertible, then it does not have an LU factorization.	0	0
b) $H = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 + x_2 = 1 \right\}$ is a subspace.	\bigcirc	\bigcirc
c) If $A\vec{x} = A\vec{y}$ for some $\vec{x} \neq \vec{y} \in \mathbb{R}^n$, then A cannot be invertible.	\bigcirc	\bigcirc
d) If A is non-singular, then A^n must be non-singular, for any integer $n > 1$.	\bigcirc	\bigcirc
e) If A and B are square matrices and $AB = I$, then A is invertible.	\bigcirc	\bigcirc
f) All elementary matrices are triangluar.	\bigcirc	\bigcirc
g) If $T_A : \mathbb{R}^3 \mapsto \mathbb{R}^4$ is one-to-one, then $\operatorname{rank}(A) = 3$ and $\dim(\operatorname{Null}(A))$ is 0.	\bigcirc	\bigcirc
h) A 5 × 5 matrix A with rank 3 has an eigenvalue $\lambda = 0$.	\bigcirc	\bigcirc
i) The algebraic multiplicity of an eigenvalue λ can be zero.	\bigcirc	\bigcirc
j) If A is square and row equivalent to an identity matrix, then $det(A) \neq 0$.	0	0

2. (2 points) Fill in the blanks.

(a) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that rotates vectors in \mathbb{R}^2 clockwise by θ radians about the origin, then reflects them through the line $x_1 = 0$, then projects them onto the x_1 -axis. Compute det(A).

Math 1554, Sample Midterm 2A. Your initials: ______ You do not need to justify your reasoning for questions on this page.

- 3. (10 points) If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*. You do not need to justify your reasoning.
 - (a) If possible, give an example of a 2×2 matrix whose column space is the line $x_1 = -2x_2$, and whose null space is the line $x_1 = 4x_2$.
 - (b) A 3×7 matrix, A, in RREF, such that dim(Col(A)) = 4, and dim(Null(A)) = 3.
 - (c) A 3×5 matrix, A, in RREF, such that dim(Col(A)) = 3.
 - (d) A 4×4 lower triangular matrix A, such that det(A) = -1 and rank(A) = 4.
 - (e) A 3×3 matrix whose determinant is equal to zero, and whose null space is the plane $x_1 + 2x_2 + 3x_3 = 0$.

Math 1554, Sample Midterm 2A. Your initials:

4. (3 points) Let A and B be $n \times n$ matrices such that $A^2 = I_n$, $BA = I_n$, and

$$C = \begin{bmatrix} A & B \\ B & -A \end{bmatrix}$$

Express C^2 in terms of A and B. Simplify as much as possible. Show your work.

5. (5 points) If a square matrix A has eigenvalue 2 with eigenvector \vec{x} and eigenvalue -1/2 with eigenvector \vec{y} , express the following in terms of \vec{x} and \vec{y} . It is not necessary to show your work here.

Math 1554, Sample Midterm 2A. Your initials:

6. (3 points) The vector $\vec{x} = (1, 12, 3)^T$ is in the span of $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$, where $\vec{v}_1 = (1, 0, -1)^T$ and $\vec{v}_2 = (-1, 3, 2)^T$. Compute $[\vec{x}]_{\mathcal{B}}$.

7. (3 points) Compute the inverse of the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ -3 & 0 & 3 \end{pmatrix}$.

is the determinant below equal to?

8. (4 points) Suppose the determinant $\begin{vmatrix} a & b & c \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = 5$, where a, b and c are real numbers. What

$$\begin{vmatrix} 1 & 2 & 3 \\ 2a & 2b & 2c \\ 5 & 7 & 9 \end{vmatrix}$$

Math 1554, Sample Midterm 2A. Your initials:

9. (4 points) Consider the sequence of row operations that reduce matrix A to echelon form, U.

$$A = \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ -2 & 2 & 0 \\ 1 & 14 & 3 \end{pmatrix}}_{A} \sim \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ 0 & 6 & 4 \\ 1 & 14 & 3 \end{pmatrix}}_{E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ 0 & 6 & 4 \\ 0 & 12 & 1 \end{pmatrix}}_{E_{2}E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ 0 & 6 & 4 \\ 0 & 0 & -7 \end{pmatrix}}_{E_{3}E_{2}E_{1}A} = U$$

(a) Construct the elementary matrices E_1 , E_2 , E_3 .

$$E_1 = E_2 = E_3 =$$

(b) Consider the matrix products listed below. Which (if any) represents A?

I) $E_3 E_2 E_1 U$ II) $E_1 E_2 E_3 U$ III) $E_1^{-1} E_2^{-1} E_3^{-1} U$ IV) $E_3^{-1} E_2^{-1} E_1^{-1} U$

10. (4 points) Construct a basis for the eigenspace of A associated with the eigenvalue $\lambda = 3$.

$$A = \begin{pmatrix} 5 & -1 & 2\\ 2 & 2 & 2\\ 2 & -1 & 5 \end{pmatrix}$$