Sample Midterm 2B, Math 1554, Fall 2019

Instructors:

Date: Fall 2019, this is a 50 minute exam
PLEASE DO NOT PHOTOCOPY THIS EXAM
Section Number (e.g. A4, QH3, etc.) \qquad TA Name \qquad
Student GT Email Address: \qquad

Circle your instructor:

If you are in a QH section, which High School do you attend? \qquad

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will not be collected and will not be graded.

Math 1554, Sample Midterm 2B. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.

1. (10 points) Indicate true if the statement is true, otherwise, indicate false.
true false
a) If $A \vec{x}=\vec{b}$ has exactly one solution for every \vec{b}, A must be singular.
b) If $\vec{x}, \vec{y} \in \mathbb{R}^{3}$ are linearly independent, then $\{\vec{x}, \vec{y}, \vec{x}+\vec{y}\}$ is a basis for \mathbb{R}^{3}.
c) The set of solutions to $A \vec{x}=\vec{b}$, for any $\vec{b} \in \mathbb{R}^{n}$, is a subspace.
d) If $A, B \in \mathbb{R}^{n \times n}$ and $A B=I$, then $B A=I$.
e) Any matrix that is similar to the identity matrix must be equal to the identity matrix.
f) If $A, B \in \mathbb{R}^{m \times n}$ have the same null space, then they have the same RREF.
g) If A is $n \times n$, and there exists a $\vec{b} \in \mathbb{R}^{n}$ such that $A \vec{x}=\vec{b}$ is inconsistent, then $\operatorname{det}(A)=0$.
h) If A has an $L U$ factorization, then A is invertible.
i) If $A \in \mathbb{R}^{n \times n}$ has eigenvector \vec{x} then $2 \vec{x}$ is also an eigenvector of A.
j) Swapping the rows of A does not change the value of $\operatorname{det}(A)$.
2. (2 points) A 2×2 matrix A has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$, with eigenvectors and eigenspaces indicated in the picture. Draw $A \vec{x}$ and $A \vec{y}$.

Math 1554, Sample Midterm 2B. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
3. (2 points) Fill in the missing entries of the 3×3 matrix A with non-zero numbers so that A has null space spanned by \vec{v}.

$$
\vec{v}=\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right), \quad A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
1 & 0 & 2 \\
0 & - & -
\end{array}\right)
$$

4. (6 points) If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write not possible. You do not need to justify your reasoning.
(a) A 4×3 matrix A with $\operatorname{rank}(A)=3$ and $\operatorname{rank}\left(A^{T}\right)=4$.

$$
A=(
$$

(b) A 2×3 matrix in RREF whose null space is spanned by $\left(\begin{array}{c}2 \\ -4 \\ 1\end{array}\right)$.

$$
A=(
$$

(c) A 3×3 matrix in echelon form, A, such that $\operatorname{Col}(A)$ is spanned by the vectors $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.

$$
A=(
$$

(d) A 4×4 stochastic matrix, P, such that the Markov Chain $x_{k+1}=P x_{k}$ for $k=0,1,2, \ldots$, does not have a unique steady-state.

$$
P=(\square)
$$

5. (1 point) Suppose \vec{v}_{1}, \vec{v}_{2} are eigenvectors of an 3×3 matrix A that correspond to eigenvalues λ_{1} and λ_{2}.

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
8 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
5 \\
0 \\
2
\end{array}\right), \quad \lambda_{1}=1, \quad \lambda_{2}=\frac{1}{10}
$$

Vector \vec{p} is such that $\vec{p}=\vec{v}_{1}-13 \vec{v}_{2}$. What does $A^{k} \vec{p}$ tend to as $k \rightarrow \infty$? \square

Math 1554, Sample Midterm 2B. Your initials:
You do not need to justify your reasoning for questions on this page.
6. (3 points) If the determinant $\left|\left(\begin{array}{cc}a & b \\ 1 & 0\end{array}\right)\right|=3$, compute the value of $\left|\left(\begin{array}{ccc}-1 & 0 & 0 \\ 2 a & 2 b & 0 \\ 0 & 0 & 5\end{array}\right)\right|$.
7. A is the 3×6 matrix $A=\left[\begin{array}{cccccc}1 & 6 & -4 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 6\end{array}\right]$
(a) (1 point) The rank of A is \qquad .
(b) (1 point) The dimension of $\operatorname{Null}(A)$ is \qquad .
(c) (2 points) Write down a basis for $\operatorname{Col}(A)$.
(d) (3 points) Construct a basis for $\operatorname{Null}(A)$.

Math 1554, Sample Midterm 2B. Your initials:
8. (4 points) S is the parallelogram determined by $\vec{v}_{1}=\binom{4}{-2}$, and $\vec{v}_{2}=\binom{0}{1}$. If $A=$ $\left(\begin{array}{ll}2 & 3 \\ 2 & 2\end{array}\right)$, what is the area of the image of S under the map $\vec{x} \mapsto A \vec{x} ?$
9. (4 points) If possible, compute the $L U$ factorization of $A=\left(\begin{array}{cc}5 & 4 \\ 10 & 6 \\ 0 & 2 \\ -5 & 1\end{array}\right)$

Math 1554, Sample Midterm 2B. Your initials:
10. (4 points) List all possible values of k, if any, so that A has a real eigenvalue with geometric multiplicity 2 . Show your work.

$$
A=\left(\begin{array}{ccc}
3 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & k
\end{array}\right)
$$

11. (4 points) Construct a basis for the subspace

$$
H=\left\{\vec{x} \in \mathbb{R}^{3}: 5 x_{1}+4 x_{2}-7 x_{3}=0\right\} .
$$

Math 1554, Sample Midterm 2B. Your initials:
12. (5 points) A has only two distinct eigenvalues, 0 and 1. $A=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 2\end{array}\right)$.
(a) Construct the eigenbasis for eigenvalue $\lambda=0$.
(b) Construct the eigenbasis for eigenvalue $\lambda=1$.

