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Vectors 1, T2, T3 are given linearly independent vectors. We wish to construct
an orthonormal basis {¢1, 2,3} for the space that they span.
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Topics and Objectives

Topics
1. Gram Schmidt Process
2. The QR decomposition of matrices and its properties

Learning Objectives
1. Apply the iterative Gram Schmidt Process, and the QR
decomposition, to construct an orthogonal basis.
2. Compute the QR factorization of a matrix.

Motivating Question The vectors below span a subspace W of R*.
Identify an orthogonal basis for W.

1 0 0
= 1 - 1 2 0
= 1| T2 = 1] z3 = 1
1 1 1
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Vectors iy, &y, T3 are given linearly independent vectors. We wish to construct
an orthonormal basis {1, &, ) for the space that they span.
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3 Let W be

X *2
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FIGURE 1
Construction of an orthogonal -

basis {v;.v2}.

W, = Span{v,, v}}

FIGURE 2 The construction of v3 from
x; and W;.

8
0,

where § is in W and z s in W In fact, if {u,. ..., u,} is any orthogonal basis of
W, then

asubspace of R". Then each y in R” can be written uniquely in the form
y=§+z o)

yeuy
up-up

yu,
u,-u,

LT oty

§= u, (&)
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THEOREM 11 The Gram-Schmidt Process
Given a basis {xi,...,X,} for a nonzero subspace W of R", define
Vi =X,
V2 =Xy — z."vl
vi- vy
3+ V1 X3:V2
V3=X3— { ey 2
Vi-vy V2:V2
SR <LV X .Y SR 5 .Y s IO
i & VitV V2: V2 Vp—1°Vp—1 4
Then {vi,...,V,} is an orthogonal basis for W In addition
Span{vy,....vi} =Span{x;.....x,} forl<k=<p 1

12that 6pm



The vectors below span a subspace I of R*. Construct an orthogonal
basis for I¥.
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Suppose 1, &>, @3 are linearly independent vectors in R*. We wish to
construct an orthogonal basis for the space that they span.

We construct vectors @, 75, 73, which form our orthogonal basis.
W1 = Span{#h}, W = Span{@, %}
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Given a basis {1, .., &} for a subspace ' of R, iteratively define

g T2t
T=Tr— = =0
T -7y
o Tt Tath
B=T— =t —=——1
-7 3

Then, {#,...,} is an orthogonal basis for V..

Secion 64
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Orthonormal Bases

Definition
A set of vectors form an orthonormal basis if the vectors are
mutually orthogonal and have unit length.

Example
The two vectors below form an orthogonal basis for a subspace .
Obtain an orthonormal basis for W
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Examples (if time permits)

Construct the QR decomposition for A.

3 -2
a) A=|2 3
0 1
100
110
b A=111
111
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QR Factorization

Any m x n matrix A with linearly independent columns has the QR
factorization
A=QR
where
1. Qism x n, its columns are an orthonormal basis for Col A.
2. Risn x n, upper triangular, with positive entries on its
diagonal, and the length of the j¢* column of R is equal to the
length of the jt* column of A.

In the interest of time:
« we will not consider the case where A has linearly dependent
columns
o students are not expected to know the conditions for which A has a
QR factorization
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6.4 EXERCISES

In Exercises 1-6, the given set is a basis for a subspace W. Use
the Gram—Schmidt process to produce an orthogonal basis for W.

3 8 0 5
1. Ol S 2. |4].| 6
-1 -6 2 =7

Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 3.

Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 4.

Find an orthogonal basis for the column space of each matrix in
Exercises 9-12.

9.

11.

In Exercises 13 and

3 -5 1 1 6 6
111 3 -8 3
-1 5 -2 10- 1 1 5 .6
| 3 7 8] | 1 -4 -3
[ 1 2 57 & 35 57
Sy g -1 =3 1
-1 4 -3 2. 0o 2 3
1 4 7 1 5 2
i 2 1] | 1 5 8]

14, the columns of Q were obtained by

applying the Gram-Schmidt process to the columns of A. Find an
upper triangular matrix R such that A = QR. Check your work.

13.

14.

15.
16.

5 9 5/6 —1/6
_| a7 _| 16 576
e -3 -5 o -3/6 1/6
i 3] 1/6  3/6
-2 37 -2/7 5/
|5 7 | 511 217
A=1 5 2 |2=| 2/7 -4
4 6] 4/7 277

Find a QR factorization of the matrix in Exercise 11.

Find a QR factorization of the matrix in Exercise 12.

In Exercises 17 and 18, all vectors and subspaces are in R". Mark
each statement True or False. Justify each answer.

17.

18.

a. If {v,.v,,v3} is an orthogonal basis for W, then mul-
tiplying v; by a scalar ¢ gives a new orthogonal basis
{V].V:.L‘V)}.

b. The Gram—Schmidt process produces from a linearly in-
dependent set {x,., ..., X, } an orthogonal set {v,, ..., \A
with the property that for each k, the vectors v,,..., Vi
span the same subspace as that spanned by x,, ..., X.

c. If A= QR, where Q has orthonormal columns, then
R= Q™.

a. If W = Span {x,.X,. X3} with {X;,Xs, X3} linearly inde-
pendent, and if {v;, v2, v3} is an orthogonal set in W, then
{Vvy. V2, v3} is a basis for W.

w

wn

19.

21

B

B

2 4 3 -3
-51.] -1 4. | -4 || 14
1 2 =] =7
1 ¥ | 3 -5
—4 =7 -1 9
0 —4 o: 21 -9
1 1 -1 3

Suppose A = QR, where Q ism x n and R is n x n. Show
that if the columns of A are linearly independent, then R must
be invertible. [Hint: Study the equation Rx = 0 and use the
fact that A = QOR.]

. Suppose A = QR, where R is an invertible matrix. Show

that A and Q have the same column space. [Hint: Given y in
Col A, show thaty = Qx for some x. Also, giveny in Col Q,
show that y = Ax for some x.]

Given A = QR as in Theorem 12, describe how to find an
orthogonal m x m (square) matrix Q, and an invertible n x n
upper triangular matrix R such that

o}

The MATLAB gqr command supplies this “full” QR factor-
ization when rank A = n.

. Letuy,.... u, be an orthogonal basis for a subspace W of

R”, and let T : R" — R" be defined by T(x) = projy X.
Show that T is a linear transformation.

. Suppose A = QR is a QR factorization of an m x n ma-

trix A (with linearly independent columns). Partition A as
[4, A,], where A, has p columns. Show how to obtain a
QR factorization of A;, and explain why your factorization
has the appropriate properties.

[M] Use the Gram-Schmidt process as in Example 2 to
produce an orthogonal basis for the column space of

=10 13 7 -11

2 1 =5 3

A= —6 3 13 =3
16 —-16 -2 5

2 1 =5 =7

[M] Use the method in this section to produce a QR factor-
ization of the matrix in Exercise 24.

. [M] For a matrix program, the Gram—Schmidt process works

better with orthonormal vectors. Starting with x, ..., X, as
in Theorem 11, let 4 =[x, X, ]. Suppose Q is an
n x k matrix whose columns form an orthonormal basis for
the subspace W spanned by the first k columns of A. Then
for x in R", QQ7 x is the orthogonal projection of x onto Wj
(Theorem 10 in Section 6.3). If x; 4+, is the next column of 4,
then equation (2) in the proof of Theorem 11 becomes

Vi1 = X1 — Q(Q T xe41)

(The parentheses above reduce the number of arithmetic
operations.) Let w41 = Vi+1/||Vk+1]|. The new Q for the
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Topics and Objectives

Topics
1. Least Squares Problems

2. Different methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares
problems using the normal equations and the QR decomposition.

Motivating Question A series of measurements are corrupted by

random errors. How can the dominant trend be extracted from the
measurements with random error?
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DEFINITION If Ais m x n and b is in R™, a least-squares solution of Ax = b is an X in R”"

such that

forall xin R".

EXAMPLE 1 Find a least-sq 1

[Ib— A%]| < [Ib — Ax|

b= Projcy 4 b

FIGURE 1 The vector b is closer to AX
than to Ax for other x.

FIGURE 2 The least-squares solution X is in R".

system Ax = b for THEOREM 14 Let A be anm x n matrix. The following statements are logically equivalent:
a. The equation Ax = b has a unique least-squares solution for cach b in R™.
b. The columns of A are linearly independent.
c. The matrix A7A is invertible.
When these statements are true, the least-squares solution & is given by
%= (4"4)"'A"b @



Inconsistent Systems

Suppose we want to construct a line of the form
y=mz+b

that best fits the data below.

®  From the data, we can construct the system:

10
1o e] |1
12[m]_2.5
13

T
Can we ‘solve’ this inconsistent system?

Section 65 Slide 327

A Geometric Interpretation

Col(4) ]
4) 0 e

The vector b is closer to A than to AZ for all other Z € ColA,
1 If5e ColA, then Tis ...

2. Seek T so that AZ is as close to b as possible. That is, & should
solve AT = b where bis .

The Least Squares Solution to a Linear System

Definition: Least Squares Solution

Let A be am x n matrix. A least squares solution to A% = b
is the solution Z for which

15— 4z < ||5 - AZ||

for all £ € R™.

Section 65 Side 328



Important Examples: Overdetermined Systems (Tall/Thin

Matrices) Important Examples: Underdetermined Systems

(Short/Fat Matrices)
A variety of factors impact the measured quantity. The 100 f 5, and
ere are too few measurements, and many
solutions to A# = b. Choose  solving the
system, with the smallest length.
1. AF=
2. For all # with A% =5, |[&]| < 1.

"RECENT MONTHLY MEAN CO, AT MAUNA LOA

g
El This i the least squares problem of ‘Big
H Data.’ (But not addressed in this course.)
g
H
i Previous data is the important time series of mean COy in the ®
i} atmosphere. The data s collected at the Mauna Loa observatory on the
oz ww  mw  aws  wme v island of Hawaii (The Big Island). One of the most important
en observatories in the world, it is located at the top of the Mauna Kea

volcano, 4,205 meters altitude.

In the above figure, the dashed red line with diamond symbols represents Secnns e Secnns Siess
the monthly mean values, centered on the middle of each month. The

black line with the square symbols represents the same, after correction

for the average seasonal cycle. (NOAA graph.)

Section 65 Sikde 330

The Normal Equations Derivation

Theorem (Normal Equations for Least Squares) )

The least squares solutions to A7 = b coincide with the
solutions to Col(d)
7 A% = A] ] e

Norma Equations B 3 —7

The least-squares solution 7 is in B

1. 3 i the least squares solution, is equivalent to 5 — AZ is orthogonal
to X

2. A vector i s in Null AT if and only if }l

3. S0 we obtain the Normal Equations:




Example

Compute the least squares solution to A& = b, where

4 0 B 2
a=lo 2|, E=]o0
11 11
Solution:

7, _[4 01
a0

Theorem

Theorem (Unique Solutions for Least Squares)

Let A be any m x n matrix. These statements are equivalent.
b has a unique least-squares solution

1. The equation Ai
for each b € R™.

2. The columns of A are linearly independent

3. The matrix AT A is invertible.

And, if these statements hold, the least square solution is

7 = (AT A)~1ATS,

Useful heuristic: AT A plays the role of ‘length-squared" of the matrix A.
(See the sections on symmetric matrices and singular value

decomposition.)

Sucion 65 Sida 37

A”F become:

The normal equations AT AZ

Example
Compute the least squares solution to AZ = b, where
1 -6 —1
1 -2 » 2
A=l o b=
17 6

Hint: the columns of A are orthogonal.

Swcion 65 Sl 19



Theorem (Least Squares and QR)
I:et m X n matrix A have a Qquecomposition. Then for each
b € R™ the equation AZ = b has the unique least squares
solution

Rz = QTb.
(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)

13
11
A711
13

w O v

Solution. The QR decomposition of A is

-1 1

1
245

A=QR=§1’1 - [023}
11 q| ooz

Secton 65 Side 341

THEOREM 15 Given an m x n matrix A with linearly independent columns, let A = OR be a
QR factorization of A as in Theorem 12. Then, for each b in R™, the equation

Ax = b has a unique least-squares solution, given by

=R'0™

1 1 1 1 g
Q=111 -1 -1 1 =1
111 -1 ] 4

And then we solve by backwards substitution R# = QT%

IR

Section 65 Side 42
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6.5 EXERCISES

In Exercises 14, find a least-squares solution of Ax =b by
(a) constructing the normal equations for & and (b) solving for X.

-1 2 4
LA=| 2 =3[b=]1
-1 3 2
2
2.4=|-2
2
1
-1
3.A=
0 3 4 1 E
2 B.Lleed=|-2 1|,b=|-9 ,u=[_1].mdv=
34 5
4 A=

)

In Exercises 5 and 6, describe all least-squares solutions of the
equation Ax = b.

[72] Compute Au and Av, and compare them with b.

Could u possibly be a least-squares solution of Ax = b?
(Answer this without computing a least-squares solution.)

21 5 2
11 0 1 M. Let A=|-3 —4 |, b=|4 ,n:[_s],andv:
11 0 3 3 2 4
sA=lh o 1|8
1 0 1 2 5 ] Compute Au and Av, and compare them with b. Is
it possible that at least one of u or v could be a least-squares
1 o 7 solution of Ax = b? (Answer this without computing a least-
: : 8 : squares solution.)
6 A=1, o [P=lg In Exercises 15 and 16, use the factorization A = QR to find the
1 0 1 5 least-squares solution of Ax = b.
1 0 1 4
2 3 2/3 1305 7
7. Compute the least-squares error associated with the least- 15+ A=|2 4 =12/3 2/3 [0 1 ]vh =3
squares solution found in Exercise 3. Lo 13 -2/3 1
8. Compute the least-squares error associated with the least- § - I L -
squares solution found in Exercise 4. 16. A= ' o [P 172 b % . b= >
SIS Ee TSRS S S| i 12 12 |lo 5|P=| s
In Exercises 9-12, find (a) the orthogonal projection of b onto o4 1/2 172 7

Col A and (b) a least-squares solution of Ax = b InExercises 17 and 18, A is anm x n matrix and b is in R”. Mark

each statement True or False. Justify each answer.

17. a. The general least-squares problem is to find an x that
makes Ax as close as possible to b.
b. A least-squares solution of AXx =b is a vector X that  24. Find aformula for the least-squares solution of Ax = b when
satisfies A% = b, where b is the orthogonal projection of the columns of A are orthonormal.
b onto Col 4. 25. Describe all least-squares solutions of the system
c. Aleast-squares solution of Ax = b is a vector & such that
Ib— Ax] < [|b— A% for all x in R x+y=2
d. Any solution of A7Ax = A”b is a least-squares solution x+y=4
of Ax=b. 26. [M] Example 3 in Section 4.8 displayed a low-pass linear
e. If the columns of A are linearly independent, then the ﬁller that changed a signal {y;} into {yz+,} and changed a
equation Ax = b has exactly one least-squares solution. hi q signal {ws} into the zero signal, where
18. a. If b is in the column space of A, then every solution of Yk = cos(wk/4) and wy = cos(3xk/4). The following cal-
Ax = b is a least-aquares solutice. culations will design a filter with approximately those prop-
rties. The filte 1
b. The least-squares solution of Ax = b is the point in the estics;The fliex cquation 1§

column space of A closest to b.

@oYi42 + @1 Yi41 + A2)k k for all k (8)

o

. A least-squares solution of Ax = b is a list of weights
that, when applied to the columns of A, produces the
orthogonal projection of b onto Col A.

Because the signals are periodic, with period 8, it suffices
to study equation (8) for k = 0,....7. The action on the
two signals described above translates into two sets of eight

d. If % is a least-squares solution of Ax=b, then
&= (A7)~ A7b.

equations, shown below:

: N " Ye+2  Yi+1 Yk Vi+1
e. The normal equations always provide a reliable method p 5 1 ‘4
for computing least-squares solutions. 5 o N g4
f. If A has a QR factorization, say A = QR. then the best 21o-1 o _7
way to find the least-squares solution of Ax = b is to 7 21 —ql[e 21
compute & = R~ Q7b. o —1 all=l=12
19. Let Abeanm x n matrix. Use the steps below to show that a ) 0o -7|L® 0
vector x in R" satisfies Ax = 0 if and only if A74x = 0. This 1 a 0 7
will show that Nul A = Nul A7A. k=71 21 17 L 1t
a. Show that if Ax = 0, then A’Ax = 0. e i
b. Suppose A74x = 0. Explain why x’A74x = 0, and use = 5. -
this to show that Ax = 0. 9 = : 9
is to show that Ax = 0. i 5 g s
20. Let A be an m x n matrix such that A4 is invertible. Show : -1 a 0 0
that the columns of A are linearly independent. [Carefil: 3 -1 a||l*® 0
You may not assume that A is invertible; it may not even be 0 7 =all|2]= e
square.] -7 o 7|L® 0
21. Let A be an m x n matrix whose columns are linearly inde- L 0 0
pendent. [Careful: A need not be square.] k=T7"1-7 1 -7/ LO

a. Use Exercise 19 to show that A74 is an invertible matrix.
Write an equation Ax = b, where Aisa 16 x 3 matrix formed

from the two coefficient matrices above and where b in R' is
formed from the two right sides of the cquations. Find ag, 1.
and a; given by the least-squares solution of Ax = b. (The

7in the data above was used as an approxnmanon for f 2/2,
to illustrate how a typical computation in an applied problem
might proceed. If .707 were used instead, the resulting filter
coefficients would agree to at least seven decimal places
with /2/4,1/2, and v/2/4, the values produced by exact
arithmetic calculations.)

b. Explain why A must have at least as many rows as
columns.

c. Determine the rank of A.

22. Use Exercise 19 to show that rank A”4 = rank A. [Hint: How
many columns does A7A have? How is this connected with
the rank of A74?]

23. Suppose A is m x n with linearly independent columns and
b is in R™. Use the normal equations to produce a formula
for b, the projection of b onto Col A. [Hint: Find X first. The
formula does not require an orthogonal basis for Col A.]
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The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the .
The least squares line minimizes the sum of squares of the

Topics and Objectives

Topics
1. Least Squares Lines
2. Linear and more complicated models

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.
1. Apply least-squares and multiple regression to construct a linear
model from a set of data points.
2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question
Compute the equation of the line y = 8y + f1z that best fits the data

z|2 5 7 8
y[1 1 4 3
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through course
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Final Exams: MATH 1554 Common Final Exam Tuesday, December 12th at 6pm

Example 1 Compute the least squares line y = o + 1z that best fits

the data
T
v
We want to solve

1 2
15
17
1 8

This is a least-squares problem : X

T
Secton 66 Siide 45 Secton 66 Siide 45
The normal equations are Least Squares Fitting for Other Curves
1
e [, 111 ] 1| We can consider least squares fitting for the form
1
i y =5+ Fhi(@) +Bifalw) + o+ Bufila)
where the functions f; are known. Should have only a few functions!
o 1111 e Keep in mind this is a linear problem in the  variables.
X7 = 5o

So the least-squares solution is given by

ERAIEH

w & =
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Least Squares Fitting for Other Curves

RECENT MONTHLY MEAN CO, AT MAUNA LOA

- & WolframAlpha

H

§ o

§ Mathematica
C i

Black line is yearly CO, levels, and the monthly is the red line. To
capture seasonality, would need a curve

daily CO; = o + Bt + S sin(2m ) + 85 cos(2m )
Above, ¢ s time, measured in months.

Average cost
per unit

x
| Units produced

FIGURE 3

Average cost curve.

Theorem

Theorem (Unique Solutions for Least Squares)

Let A be any m x n matrix. These statements are equivalent.
1. The equation AZ = b has a unique least-squares solution
for each b € R™.
2. The columns of A are linearly independent.
3. The matrix AT A is invertible.
And, if these statements hold, the least square solution is

7= (ATA)~1ATb.

Useful heuristic: AT A plays the role of ‘length-squared’ of the matrix A.
(See the sections on symmetric matrices and singular value
decomposition.)

ection 6.5 Slide 337

LeastSquares|{{z:, 51,11}, {22, 72,1},

WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha,
Mathematica, and many other software.

Linear £it {1, y1} {22, 02} oo {s i }}

RN

Almost any spreadsheet program does this as a function as well

Zs
g2
E-é
34
x
Surface area
of foliage
FIGURE 4 FIGURES

e ) Data points along a cubic curve.
Production of nutrients.

Theorem (Least Squares and QR)

Let m x n matrix A have a QR decomposition. Then for each
b € R™ the equation AZ = b has the unique least squares
solution

Rt = QTb.
(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)




6.6 EXERCISES

In Exercises 1-4, find the equation y = B, + B,x of the least-
squares line that best fits the given data points.

1. (0,1),(1,1),(2.2).(3,2)

(1.0),(2,1),(4,2),(5.3)

(=1,0),(0,1),(1,2),(2.4)

(2,3),(3,2),(5.1),(6.0)

Let X be the design matrix used to find the least-squares line
to fitdata (x;, yy). ..., (X4, yn). Use a theorem in Section 6.5
to show that the normal equations have a unique solution
if and only if the data include at least two data points with
different x-coordinates.

Let X be the design matrix in Example 2 corresponding to
a least-squares fit of a parabola to data (x;. yy)..... i V8);
Suppose x, x5, and x; are distinct. Explain why there is only
one parabola that fits the data best, in a least-squares sense.
(See Exercise 5.)

A certain experiment produces the data (1,1.8), (2,2.7),
(3.3.4), (4,3.8),(5.3.9). Describe the model that produces
a least-squares fit of these points by a function of the form

y = Bix + fax?

Such a function might arise, for example, as the revenue from
the sale of x units of a product, when the amount offered for
sale affects the price to be set for the product.

a. Give the design matrix, the observation vector, and the
unknown parameter vector.

11

b. [M] Find the associated least-squares curve for the data.

A simple curve that often makes a good model for the vari-

able costs of a company, as a function of the sales level x,

has the form y = Byx + Box? + Bax*. There is no constant

term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the
linear model that leads to a least-squares fit of the equa-
tion above, with data (x;, y)..... (XnsYn)-

. [M] Find the least-squares curve of the form above to fit
the data (4, 1.58), (6,2.08), (8,2.5), (10, 2.8), (12,3.1),
(14,3.4), (16,3.8), and (18, 4.32), with values in thou-
sands. If possible, produce a graph that shows the data
points and the graph of the cubic approximation.

o

9. A certain experiment produces the data (1,7.9), (2, 5.4), and
(3. —.9). Describe the model that produces a least-squares fit
of these points by a function of the form

y = Acosx + Bsinx

Suppose radioactive substances A and B have decay con-
stants of .02 and .07, respectively. If a mixture of these two
substances at time ¢ = 0 contains M, grams of A and Mg
grams of B, then a model for the total amount y of the mixture
present at time 7 is

Mae=% 4 Mge—0" (6)

Suppose the initial amounts M, and Mg are unknown,
but a scientist is able to measure the total amounts
present at several times and records the following points
(t;. yi): (10,21.34), (11,20.68), (12,20.05), (14,18.87),
and (15, 18.30).

a. Describe a linear model that can be used to estimate M

and Mg.

b. [M] Find the le:

squares curve based on (6).

Halley’s Comet last appeared in 1986 and will reappear in
2061.

[M] According to Kepler’s first law, a comet should have
an elliptic, parabolic, or hyperbolic orbit (with gravitational
attractions from the planets ignored). In suitable polar coor-
dinates, the position (r, ) of a comet satisfies an equation of
the form

r=p+e(r-cos?)

where B is a constant and e is the eccentricity of the orbit,
with0 < e < 1 foranellipse,e = 1 foraparabola,and e > 1
for a hyperbola. Suppose observations of a newly discovered
comet provide the data below. Determine the type of orbit,
and predict where the comet will be when # = 4.6 (radians).?

9| 88 110
r|300 230

142
1.65

1.77
125

2.14
101

[M] A healthy child’s systolic blood pressure p (in millime-
ters of mercury) and weight w (in pounds) are approximately
related by the equation

Bo+Bilnw=p

Use the following experimental data to estimate the systolic
blood pressure of a healthy child weighing 100 pounds.

3 The basic idea of least-squares fitting of data is due to K. F. Gauss
(and, independently, to A. Legendre), whose initial rise to fame occurred
in 1801 when he used the method to determine the path of the asteroid
Ceres. Forty days after the asteroid was discovered, it disappeared behind
the sun. Gauss predicted it would appear ten months later and gave its
location. The accuracy of the predicti ished the European scientific
community.




w 44 61 81 113 131
Inw | 378 411 439 473 488
P 91 98 103 110 112

13. [M] To measure the takeoff performance of an airplane, the
horizontal position of the plane was measured every second,
from 1 = 0 to ¢ = 12. The positions (in feet) were: 0, 8.8,
299, 620,104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7,
686.8, and 809.2.

a. Find the least-squares cubic curve y = f,+ fit +
Bat? + Bst? for these data.

b. Use the result of part (a) to estimate the velocity of the
plane when 7 = 4.5 seconds.

1 1
14. LetX = ;(J. +--+x,)andy = ;(y. + -+ + y,).Show
that the least-squares line for the data (x,, yy),.... (Xns ¥n)
must pass through (¥, ¥). That is, show that ¥ and ¥ satisfy

the linear equation ¥ = fjo + 517. [Hint: Derive this equa-
tion from the vector equation y = X 8 + €. Denote the first
column of X by 1. Use the fact that the residual vector € is
orthogonal to the column space of X and hence is orthogonal
to1.]

Given data for a least-squares problem, (xy. y1)..... (X,, y,), the

following abbreviations are helpful:

Tx=Yx Ta=Yiox

Ty=Xim¥n LXV=Xim X

The normal equations for a least-squares line y = 30 - ﬁlx may

be written in the form
npo+hXx=3y

BoXx+pXx=Yxy

15. Derive the normal equations (7) from the matrix form given
in this section.

(W)

16. Use a matrix inverse to solve (h; system of eq| in (7)
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. Rewrite the data in Example 1 with new x-coordinates
in mean deviation form. Let X be the associated design
matrix. Why are the columns of X orthogonal?

b. Write the normal equations for the data in part (a), and

solve them to find the least-squares line, y = B, + fix*,

where x* = x —5.5.

18. Suppose the x-coordinates of the data (x,, y,)..... (X, Yn)
are in mean deviation form, so that }_ x; = 0. Show that if
X is the design matrix for the least-squares line in this case,
then XX is a diagonal matrix.

Exercises 19 and 20 involve a design matrix X with two or more
columns and a least-squares solution 8 of y = X 8. Consider the
following numbers.

(i) [IXB|>—the sum of the squares of the “regression term.”
Denote this number by SS(R).

@) [ly— Xﬁ"z—lhe sum of the squares for error term. Denote

this number by SS(E).
(iii) [|y|>—the “total” sum of the squares of the y-values. Denote
this number by SS(T).
Every text that di: and the linear model
y=XB+e€i these though termi and

notation vary somewhat. To simplify matters, assume that the
mean of the y-values is zero. In this case, SS(T) is proportional to
what is called the variance of the set of y-values.

19. Justify the equation SS(T) = SS(R) + SS(E). [Hint: Use a
theorem, and explain why the hypotheses of the theorem are
satisfied.] This equation is extremely important in statistics,
both in regression theory and in the analysis of variance.

20. Show that [ XB|* = A7 X7y. [Hint: Rewrite the left side
and use the fact that B satisfies the normal equations.] This
formula for SS(R) is used in statistics. From this and from

and thereby obtain formulas for o and B. that appear in many
statistics texts.

E ise 19, obtain the standard formula for SS(E):
SSE) =y'y-B X7y



