

Section 2.3 : Invertible Matrices

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

"A synonym is a word you use when you can't spell the other one." - Baltasar Gracián

The theorem we introduce in this section of the course gives us many ways of saying the same thing. Depending on the context, some will be more convenient than others.

Topics and Objectives

Topics

We will cover these topics in this section.

1. The invertible matrix theorem, which is a review/synthesis of many of the concepts we have introduced.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- $\ensuremath{\mathbbm 1}$. Characterize the invertibility of a matrix using the Invertible Matrix Theorem.
- 2. Construct and give examples of matrices that are/are not invertible.

Motivating Question

When is a square matrix invertible? Let me count the ways!

																												e Sche								
		ç.,		12.	Incom	م ا ما : م	Mat						٦	Горіс	s and	l Obj	jectiv	ves										ns due to in	Mon	ther will like) Tue		cancelling re Wed		tures and pos Thu	isibly mov	ing through
		Sec	tion 2	<mark></mark> :	Inve	rtible	wat	rices							pics												Week Date 1 8/21	18 l - 8/25	Lecture	Studio WS1.1		Lecture		itudio NS1.2		Lecture 1.3
			Chi	apter 2	: Matr	ix Alge	bra											pics in trix the			is a rev	iew/sv	nthesis	s of ma	anv		2 8/28	8 - 9/1	1.4	WS1.3,1	4	1.5	v	N\$1.5		1.7
			Ma	ath 155	4 Linea	ır Algeb	wa											e have							,		3 9/4	- 9/8	Break	W\$1.7		1.8	v	N\$1.8		1.9
															jective												4 9/11	l - 9/15	2.1	W\$1.9,2	1	Exam 1, Rev	view C	Cancelled		2.2
	A sync	nym is	a word g		when asar G		't spell	the ot	her one	."						pics co lowing		in this	section	i, stude	ents ar	e expec	ted to	be ab	le to		5 9/18	8 - 9/22	2.3,2.4	WS2.2,2	3	2.5	v	N\$2.4,2.5		2.8
The	heorer	n we in	troduce	in this	section	of the	course	gives u	is many	ways				1	Char. Theo		e the i	nvertib	ility of	a matr	ix usin	g the l	nvertib	ble Mat	rix			5 - 9/29	2.9	W\$2.8,2		3.1,3.2		N\$3.1,3.2		3.3
of	aying	the sam	ne thing. o			n the co n others		some w	vill be n	nore				2			and giv	re exam	ples of	matric	es tha	t are/a	re not	inverti	ble.			2 - 10/6	4.9	W\$3.3,4		5.1,5.2		N\$5.1.5.2		5.2
														Mo	otivati	ng Qu	estion											9 - 10/13 16 - 10/20		Break WS5.3		Exam 2, Rev		Cancelled		5.3 6.1
														Wh	ien is a	squar	e matr	rix inve	rtible?	Let me	e count	the w	ays!					16 - 10/20		W\$5.3		6.2		N56.2		6.3
																												80 - 11/3		WS6.3,6		6.4,6.5		N\$6.4,6.5		6.5
																											12 11/6	6 - 11/10	6.6	W\$6.5,6	.6	Exam 3, Rev	view C	Cancelled		PageRank
																											13 11/1	13 - 11/17	7.1	WSPagel	łank	7.2	v	N\$7.1.7.2		7.3
																											14 11/2	80 - 11/24	7.3,7.4	W\$7.2,7	3	Break	B	Break		Break
																											15 11/2	27 - 12/1	7.4	W\$7.3,7	4	7.4	v	N\$7.4		7.4
) - 12/8 11 - 12/15	Last lecture	Last Stur		Reading Peri	iod m Tuesda	w December	12th at é	iom
1	T 1				-							72.2															-	-	-		- comm			, Dictilibil	-	-
	The	Inver	tible M	vlatri	x ihe	eorem								Inv	ertib	lity a	and C	Compo	sitior																	
		vertible	e matrice	s enjoy	a rich	set of	equivale	ent dese	cription	s.					The d	iagram	below	gives us	anothe	r persp	ective	on the r	ole of .	A^{-1} .												
	L	et A be	e an $n imes$		rix. Th	ese stat	ements	are all	equiva	lent.									7																	
			invertible row equi		to I_n .													<i>x</i> ↑				Wult	ipiicatic	on by A						• •						
	С) A ha	s n pivot = 0 has o	al colu	mns. (e pivota	əl.)												_	Ļ	_													
	е) The	columns	of A a	re linea	rly inde	pendent								Mu	ltiplicati	ion by /	A ⁻¹			-	Aż														
			linear tra equation						n																											
	h) The	columns	of A sp	oan \mathbb{R}^n										The m	atrix ir		A^{-1} tra			ck to \bar{x}	. This i	is beca	use:												
			linear tra e is a n >						has a l	left inve	erse.)						A^{\cdot}	$^{-1}(A\vec{x})$	$= (A^{-1})$	$A)\vec{x} =$																
	k) Then	e is a n > s invertib	< n ma																																
	Section 2.3) A- 13 584e 115	s invertit.	ve.										Section	2.3 58de	116														• •						
																														• •						
																														•						
																														• •				• •		
																																		• •		
																														• •						
																																		• •		
																										•				• •				• •		

The Invertible Matrix Theorem: Final Notes

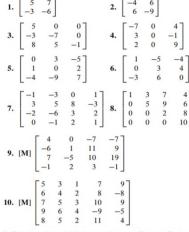
 $\bullet\,$ Items j and k of the invertible matrix theorem (IMT) lead us directly to the following theorem.

	Theorem	
ſ	Theorem	

If A and B are $n\times n$ matrices and AB=I, then A and B are invertible, and $B=A^{-1}$ and $A=B^{-1}.$

- The IMT is a set of equivalent statements. They divide the set of all square matrices into two separate classes: invertible, and non-invertible.
- As we progress through this course, we will be able to add additional equivalent statements to the IMT (that deal with determinants, eigenvalues, etc).

Section 23	Side 11	7													Sei	tion 2.3	Side 118														
	•																														
			•																												
	•			•		•					•		•	•			•					•			•	•					
				•		•					•											•			•	•					
0			•		•																										
											_												_								
Exam	ole 2											Matri																			
nun	ossible, 1bers sc 10, state	that e	the miss each of	sing ele the ma	ments o trices ar	f the m re singu	atrices lar. If i	below v t is not	with possible	e to			MCP	revious ?).	exampi	le is an	example	e of a m	iatrix co	ompletic	on prob	lem									
			11		1	1)	(1	0 0)									or recita ther exa					h									
		$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$,	(0 1 0 0	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$,		1 1 1,)				the r.	ating of	f movie	i by cu	which stomer ssing, j	i if cust	tomer i	has wa	tched										
													entrie	es in ord atch nex	ler to m	ake reco	ommend	lations t	o custo	mers on	what	ļ									
													_																		
Section 23	ma. 118											Section 23		aren't e	xpected n	to be fa iotivate	amiliar w matrix c	ith this ompletic	material m.	. It's pre	esented	to									
560500 2.3	2000 119											Section 2.3	5494 120																		
																				-							-			-	


Example 1

Is this matrix invertible?

 $\begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$

2.3 EXERCISES

Unless otherwise specified, assume that all matrices in these exercises are $n \times n$. Determine which of the matrices in Exercises 1–10 are invertible. Use as few calculations as possible. Justify your answers.

In Exercises 11 and 12, the matrices are all $n \times n$. Each part of the exercises is an *implication* of the form "If "statement 1", then "statement 2." Mark an implication as True if the truth of "statement 2." always follows whenever "statement 1" happens to be true. An implication is False if there is an instance in which "statement 2" is false but "statement 1" is true. Justify each answer.

- 11. a. If the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
 - b. If the columns of A span Rⁿ, then the columns are linearly independent.
 - c. If A is an $n \times n$ matrix, then the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
 - d. If the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, then A has fewer than *n* pivot positions.
 - e. If A^T is not invertible, then A is not invertible.
- **12.** a. If there is an $n \times n$ matrix D such that AD = I, then there is also an $n \times n$ matrix C such that CA = I.
 - b. If the columns of A are linearly independent, then the
- 30. If A is an n×n matrix and the transformation x → Ax is one-to-one, what else can you say about this transformation? Justify your answer.
- 31. Suppose A is an n×n matrix with the property that the equation Ax = b has at least one solution for each b in Rⁿ. Without using Theorems 5 or 8, explain why each equation Ax = b has in fact exactly one solution.
- 32. Suppose A is an n × n matrix with the property that the equation Ax = 0 has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation Ax = b must have a solution for each b in Rⁿ.
- In Exercises 33 and 34, *T* is a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 . Show that *T* is invertible and find a formula for T^{-1} .
- **33.** $T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 7x_2)$
- **34.** $T(x_1, x_2) = (6x_1 8x_2, -5x_1 + 7x_2)$
- 35. Let T : ℝⁿ → ℝⁿ be an invertible linear transformation. Explain why T is both one-to-one and onto ℝⁿ. Use equations (1) and (2). Then give a second explanation using one or more theorems.
- 36. Let T be a linear transformation that maps ℝⁿ onto ℝⁿ. Show that T⁻¹ exists and maps ℝⁿ onto ℝⁿ. Is T⁻¹ also one-to-one?
- 37. Suppose T and U are linear transformations from ℝⁿ to ℝⁿ such that T(Ux) = x for all x in ℝⁿ. Is it true that U(Tx) = x for all x in ℝⁿ? Why or why not?

- d. If the linear transformation $(\mathbf{x}) \mapsto A\mathbf{x}$ maps \mathbb{R}^n into \mathbb{R}^n , then A has *n* pivot positions.
- e. If there is a **b** in \mathbb{R}^n such that the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is not one-to-one.
- 13. An m×n upper triangular matrix is one whose entries below the main diagonal are 0's (as in Exercise 8). When is a square upper triangular matrix invertible? Justify your answer.
- 14. An $m \times n$ lower triangular matrix is one whose entries *above* the main diagonal are 0's (as in Exercise 3). When is a square lower triangular matrix invertible? Justify your answer.
- 15. Can a square matrix with two identical columns be invertible? Why or why not?
- **16.** Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^{5} ? Why or why not?
- 17. If A is invertible, then the columns of A^{-1} are linearly independent. Explain why.
- **18.** If *C* is 6×6 and the equation $C\mathbf{x} = \mathbf{v}$ is consistent for every \mathbf{v} in \mathbb{R}^6 , is it possible that for some \mathbf{v} , the equation $C\mathbf{x} = \mathbf{v}$ has more than one solution? Why or why not?
- **19.** If the columns of a 7×7 matrix *D* are linearly independent, what can you say about solutions of $D\mathbf{x} = \mathbf{b}$? Why?
- **20.** If $n \times n$ matrices *E* and *F* have the property that EF = I, then *E* and *F* commute. Explain why.
- 21. If the equation Gx = y has more than one solution for some y in ℝⁿ, can the columns of G span ℝⁿ? Why or why not?
- 22. If the equation $H\mathbf{x} = \mathbf{c}$ is inconsistent for some \mathbf{c} in \mathbb{R}^n , what can you say about the equation $H\mathbf{x} = \mathbf{0}$? Why?
- **23.** If an $n \times n$ matrix K cannot be row reduced to I_n , what can you say about the columns of K? Why?
- 24. If L is n × n and the equation Lx = 0 has the trivial solution, do the columns of L span Rⁿ? Why?
- 25. Verify the boxed statement preceding Example 1.
- **26.** Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent.
- 27. Show that if AB is invertible, so is A. You cannot use Theorem 6(b), because you cannot assume that A and B are invertible. [*Hint:* There is a matrix W such that ABW = 1. Why?]
- 28. Show that if AB is invertible, so is B.

en the 29. If A is an $n \times n$ matrix and the equation $A\mathbf{x} = \mathbf{b}$ has more than

Section 2.4 : Partitioned Matrices

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

Topics and Objectives

Topics We will cover these topics in this section. 1. Partitioned matrices (or block matrices)

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply partitioned matrices to solve problems regarding matrix invertibility and matrix multiplication.

																												•				•	•				
												- 1	Top	oics a	nd C	bject	ives								93) 1					•		•		•	•		
		Sectio	n 2.4	4:P	artiti	oned	Matr	rices						Topics We will	cover	these t	opics ii	n this s	ection.								•	•	•	•				•	•	•	
			Cha	pter 2 :	Matrix	Algebra										ed matr	ices (o	r block	matric	es)																	
			Mat	th 1554	Linear	Algebra								Object For the do the	topics	covere	d in th	s secti	on, stud	dents ar	e expe	cted to	be abl	le to													
														1. Ap	oply pa		d matri	ces to multin	solve p	roblems	regard	ding ma	atrix														
															rention	cy and	matrix	manap	lication				6					 52.2.2.3				WS2.					
																							-		9/18 - 9/22		2.3,2.4	52.2,2.3		2.5		W52.			2.8		
																							. 7	-	10/2 - 10/6		4.9	53.3,4.9		5.1,5.2		WS5.			5.2		
																									10/2 - 10/0		Break	eak		Exam 2,	Review	Cano			5.3		
																				•														•	•		
•																												•	•					•	•	•	
•	W	hat is a	a Par	titione	d Mat	trix?					1.		And	ther E	xamp	le of a	Parti	tionec	l Matr	ix									•			•	•	•	•		
		Exampl This ma	le itrix:											Example	: The	educed	echelon	form o	f a mati	rix. We	an use	a										•					
					3 1 0	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	10 01 42									F1 0	00*		:]													•	•				
		can also	be wri													0 1 0 0 0 0 0 0	10* 01*		$\begin{bmatrix} I_i \\ * \\ 0 \end{bmatrix} = \begin{bmatrix} I_i \\ 0 \end{bmatrix}$	$\begin{bmatrix} F \\ 0 \end{bmatrix}$																	
				[3 1 [1 6 [0 0		$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$=\begin{bmatrix}A_{1,1}\\A_{2,1}\end{bmatrix}$	$\begin{array}{c} A_{1,2} \\ A_{2,2} \end{array}$]					This is u		0 0	0 0 0		ŋ	as we wi	ll see la	ter in															
		We part dimensio	itioned			[4 2]] four bloc	: ks , each	n of whi	ch has d	lifferent			,	his cour	se.	,																					
																																•			•		
																																•		•			
•				•					•			•																	•			•	•	•		•	
																				•				0								•	•	•	•	•	
																																•			•		
						•					•																			•							
						•					•																										
																																•			•		
				•					•																							•	•	•	•		
																										•						•			•		
				•					•											•														•			
						•					•	•										•								•	•	•	•	•	•		
																																				_	

Row Column Method	Example of Row Column Method	
Recall that a row vector times a column vector (of the right dimensions) is a scalar. For example,	Recall, using our formula for a 2 × 2 matrix, $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}^{-1} = \frac{1}{ac} \begin{bmatrix} c & -b \\ 0 & a \end{bmatrix}$.	
$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} =$	Example: Suppose $A \in \mathbb{R}^{n \times n}$ $B \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{n \times n}$ are invertible	
This is the row column matrix multiplication method from Section 2.1.	matrices. Construct the inverse of $\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$.	
Theorem		
Let A be $m \times n$ and B be $n \times p$ matrix. Then, the (i, j) entry of AB is $row_i A \cdot col_j B.$		
This is the Row Column Method for matrix multiplication.		
Partitioned matrices can be multiplied using this method, as if each block		
were a scalar (provided each block has appropriate dimensions).	Seciae 24 - 556e 126	
F1 07		
21. a. Verify that $A^2 = I$ when $A = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$.	$6. \begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} =$	[1 0]
b. Use partitioned matrices to show that $M^2 = I$ wh	$\mathbf{n} \qquad \qquad \mathbf{v} \begin{bmatrix} Y & Z \end{bmatrix} \begin{bmatrix} B & C \end{bmatrix}^{-1}$	
$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 \end{bmatrix}$		
$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & 1 \end{bmatrix}$		
· · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · ·
. .		
. .	. .	
. .		
	. .	

ie (Loium	in Ro	w M	etho	d (if	time	e per	mits))							n Alg	gorithm	n: Ar	n impi	ressiv	e use	of pa	artitior	ned				
A	column	vector	times	a row '	vector	is a m	atrix.	For exa	ample,				m	atrice														
						3] =	_							arithr	netic s	teps. S	n of two trassen's	algorit	thm par	titions	the ma	trices.	makes a					
					$\begin{bmatrix} \hat{0}\\2 \end{bmatrix}$ [1	-1								very comp	clever s utation	sequences $n \text{ to } n^2$	e of mul ⁸⁰³ ste	tiplicat ps.	ions, ac	ditions	s, to red	uce the						
		eorem		and I	2 60 10	V n m	atrix	Thon			1					(Au) (Au)	(Au) (Au)		(
	Let	Abe		and L	be n	~ <i>p</i>		$w_1 B$							/	\sim	X	$\langle \cdot \rangle$		Y	XA							
		Æ	AB =	$[col_1 A]$		col_n	A]	÷							(H) (H)				Í	<u>s</u>		20						
			=	$sol_1 A$	$row_1 B$	·+···		w _n B	B								- TO	<u> </u>	T)	900° 9	Legend							
					m	× p mat	trices		_								Š) 9.Q	86		→ Sult → A44 → Sult → Mult	attic Partition tion (Assignment action (Neg. ass plication	n if first) g. if first)					
	Th	is is the	Colu	nn Ro	w Met	thod fo	or mat	rix mul	tiplicat	tion.				Stu	dents a	ren't ex	pected to	be fan) niliar wit	h this n	naterial.	lt's pre	sented to					
n 2.4	S6de 127												Secti		ie 128				atrix par									
										0	0	0		The F	Fast F	ourier	Trans	form	(FET)									
																	ential algo		. ,									
																I matrice	es recursiv	rely.				t uses						
																	$G_0 = [1]$, G	n+1 =	$G_n = -C$ $G_n = G$	$\begin{bmatrix} G_n \\ n \end{bmatrix}$							
																			mean	ns that it	e structu t can be	comput	ed in					
																\$.	XX.		nearl	v linear	time. T ving over f n^3 . It i	his is an						
															Ŵł	ЖŴ	\mathbb{N}		comp can c quick	compute	$f n^3$. It i $G_n x$, a	neans the G_n^{-1}	iat we very					
															TU FU F	amite	MMM epected to	he fami			wint the	orecenter	1.00					
															564:129	aren i ez			trix partit		mar. n. s	presente	110					
																	• •											
															•		• •				•			• •				
																	• •											
																	• •						•					
																	• •							• •				
																	• •											
																	• •											
																	• •							• •				

2.4 EXERCISES

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

1. $\begin{bmatrix} I & 0 \\ E & I \end{bmatrix} \begin{bmatrix} A \\ C \end{bmatrix}$	$\begin{bmatrix} B \\ D \end{bmatrix}$	2. $\begin{bmatrix} E & 0 \\ 0 & F \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$
3. $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} W \\ Y \end{bmatrix}$	$\begin{bmatrix} x \\ z \end{bmatrix}$	$4. \begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$

In Exercises 5–8, find formulas for X, Y, and Z in terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [*Hint:* Compute the product on the left, and set it equal to the right side.]

5. $\begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ X & Y \end{bmatrix} = \begin{bmatrix} 0 & I \\ Z & 0 \end{bmatrix}$ 6. $\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$ 7. $\begin{bmatrix} X & 0 & 0 \\ Y & 0 & I \end{bmatrix} \begin{bmatrix} A & Z \\ B & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$ 8. $\begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} 0 & Y & Z \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}$

 Suppose A₁₁ is an invertible matrix. Find matrices X and Y such that the product below has the form indicated. Also, compute B₂₂. [*Hint:* Compute the product on the left, and set it equal to the right side.]

B₁₁ B₁₂

$\begin{bmatrix} X & I & 0 \\ Y & 0 & I \end{bmatrix}$	A ₂₁ A ₃₁	A	22 32	=	0	B	12
10. The inverse of	$\begin{bmatrix} I \\ C \\ A \end{bmatrix}$	0 I R	0	is		0 1 V	$\begin{bmatrix} 0\\0\\I \end{bmatrix}$.
Find X Y and			-		L		- 1

 $\begin{bmatrix} I & 0 & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \end{bmatrix}$

In Exercises 11 and 12, mark each statement True or False. Justify each answer.

- a. If A = [A₁ , A₂] and B = [B₁ , B₂], with A₁ and A₂, the same sizes as B₁ and B₂, respectively, then A + B = [A₁ + B₁ , A₂ + B₂].
 b. If A = [A₁₁ , A₂₂] and B = [B₁]/B₁], then the partitions
 - $\begin{bmatrix} A_{21} & A_{22} \end{bmatrix}$ $\begin{bmatrix} B_2 \end{bmatrix}$ of *A* and *B* are conformable for block multiplication.
- a. The definition of the matrix-vector product Ax is a special case of block multiplication.
 - b. If A_1, A_2, B_1 , and B_2 are $n \times n$ matrices, $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, and $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$, then the product *BA* is defined, but *AB* is not.
- **13.** Let $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$, where *B* and *C* are square. Show that *A* is invertible if and only if both *B* and *C* are invertible.
- 14. Show that the block upper triangular matrix A in Example 5 is invertible if and only if both A₁₁ and A₂₂ are invertible. [*Hint:* If A₁₁ and A₂₂ are invertible, the formula for A⁻¹ given in Example 5 actually works as the inverse of A₁] This fact about A is an important part of several computer algorithms that estimate eigenvalues of matrices. Eigenvalues are discussed in Chapter 5.

15. Suppose A_{11} is invertible. Find X and Y such that

$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}$	A_{11}	A12			0	A_{11}	0		Y
	An	An	=	X	I	0	S	0	I

(7)

where $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$. The matrix S is called the Schur complement of A_{11} . Likewise, if A_{22} is invertible, the matrix $A_{11} - A_{12}A_{22}^{-1}A_{21}$ is called the Schur complement of A_{22} . Such expressions occur frequently in the theory of systems engineering, and elsewhere.

16. Suppose the block matrix A on the left side of (7) is invertible and A₁₁ is invertible. Show that the Schur complement S of A₁₁ is invertible. JHm: The outside factors on the right side of (7) are always invertible. Verify this,] When A and A₁₁ are both invertible, (7) leads to a formula for A⁻¹, using S⁻¹, A₁₁⁻¹, and the other entries in A.

Section 2.5 : Matrix Factorizations

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity." - Alan Turing

The use of the LU Decomposition to solve linear systems was one of the areas of mathematics that Turing helped develop.

Topics and Objectives

 Topics

 We will cover these topics in this section.

 1. The LU factorization of a matrix

 2. Using the LU factorization to solve a system

 3. Why the LU factorization works

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Compute an LU factorization of a matrix.
- 2. Apply the LU factorization to solve systems of equations.
- 3. Determine whether a matrix has an LU factorization.

Section 2.5 : Matrix Factorizations	Topics and Objectives	5	9/18 - 9/22	2.3,2.4	WS2	2.2,2.3	2.5	W\$2.4,3	1.5	2.8	
Section 2.5 : Matrix Factorizations	Topics We will cover these topics in this section.	6	9/25 - 9/29	2.9	WS2	2.8,2.9	3.1,3.2	WS3.1,	1.2	3.3	
Chapter 2 : Matrix Algebra Math 1554 Linear Algebra	 The LU factorization of a matrix Using the LU factorization to solve a system 	7	10/2 - 10/6	4.9	WSS	3.3,4.9	5.1,5.2	WS5.1,	i.2	5.2	
	3. Why the LU factorization works	8	10/9 - 10/13	Break	Brea	ak	Exam 2, Revi	ew Cancelle	ed .	5.3	
"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity." - Alan Turing	Objectives For the topics covered in this section, students are expected to be able to										
The use of the LU Decomposition to solve linear systems was one of the	do the following. 1. Compute an <i>LU</i> factorization of a matrix.										
areas of mathematics that Turing helped develop.	 Apply the LU factorization to solve systems of equations. Determine whether a matrix has an LU factorization. 				• •			• •			
							• •	• •			
Sector 25 Side 10	Section 2.5 Stile 111		• •		• •		• •	• •			
	In the beginning							• •			
• • • • • • • • • • • •	In the beginning,	• •						• •			
RSSS	with integers there w	vere	*pri	me*	fac	ctor	izatio	ns		•	
		• •					• •	• •			
		• •					• •				
		• •									
			 :!*		· · ·			• •			
	then came the *poly	поп		ac	oriz	and	ons	•			
		• •			• •						
		• •			• •						
		• •			• •		• •	• •			
		• •			• •		• •	• •			
		• •	• •		• •		• •	• •			
	until finally,	• •	• •		• •		• •	• •			
	until linally,	• •			• •			• •			
		• •			• •		• •	• •			
	** matrix ** factorizati	ons	app	eare	ed!			• •			
					• •		• •	• •			
	Matrix Factorizations				• •		• •				
Motivation											
Motivation $\label{eq:model} * \mbox{ Recall that we could solve } A \vec{x} = \vec{b} \mbox{ by using }$	 A matrix factorization, or matrix decomposition is a factorization. 	ctorization						• •			
\ast Recall that we could solve $A\vec{x}=\vec{b}$ by using $\vec{x}=A^{-1}\vec{b}$	of a matrix into a product of matrices. • Factorizations can be useful for solving $A\vec{x} = \vec{b}$, or unders				• •		• •	• •	•	•	
• Recall that we could solve $A\vec{x}=\vec{b}$ by using $\vec{x}=A^{-1}\vec{b}$ • This requires computation of the inverse of an $n\times n$ matrix, which is especially difficult for large $n.$	of a matrix into a product of matrices. • Factorizations can be useful for solving $A\vec{x} = \vec{b}$, or unders the properties of a matrix. • We explore a few matrix factorizations throughout this co	tanding urse.	0	0	• •	•	• •	• •	•	•	•
 Recall that we could solve A\$\vec{x}\$ = \$\vec{b}\$ by using \$\vec{x}\$ = A^{-1\$\vec{b}\$}	of a matrix into a product of matrices. • Factorizations can be useful for solving $A\vec{x} = \vec{b}$, or unders the properties of a matrix.	tanding urse.		•	• •	•	• •	· ·	•	•	•
• Recall that we could solve $A\vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ • This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n . • Instead we could solve $A\vec{x} = \vec{b}$ with acussian Elimination, but this is	 of a matrix into a product of matrices. Factorizations can be useful for solving A² = δ, or unders the properties of a matrix. We explore a few matrix factorizations throughout this co In this section, we factor a matrix into lower and into up 	tanding urse.	•	0	· ·	•	· ·	· · ·	•	•	•
• Recall that we could solve $A\vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ • This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n . • Instead we could solve $A\vec{x} = \vec{b}$ with daussian Elimination, but this is not efficient for large n . • There are more efficient and accurate methods for solving linear	 of a matrix into a product of matrices. Factorizations can be useful for solving A² = δ, or unders the properties of a matrix. We explore a few matrix factorizations throughout this co In this section, we factor a matrix into lower and into up 	tanding urse.	•	•	· · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	•	•
• Recall that we could solve $A\vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ • This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n . • Instead we could solve $A\vec{x} = \vec{b}$ with daussian Elimination, but this is not efficient for large n . • There are more efficient and accurate methods for solving linear	 of a matrix into a product of matrices. Factorizations can be useful for solving A² = δ, or unders the properties of a matrix. We explore a few matrix factorizations throughout this co In this section, we factor a matrix into lower and into up 	tanding urse.		•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	•	• • •
• Recall that we could solve $A \vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ • This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n . • Instead we could solve $A \vec{x} = \vec{b}$ with Gaussian Elimination, but this is not efficient for large n . • There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations.	 of a matrix into a product of matrices. * Factorizations can be useful for solving AZ = b, or unders the properties of a matrix. We explore a few matrix factorizations throughout this cc In this section, we factor a matrix into lower and into up triangular matrices. 	tanding urse.	•	•	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	•	•
• Recall that we could solve $A\vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ • This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n . • Instead we could solve $A\vec{x} = \vec{b}$ with daussian Elimination, but this is not efficient for large n . • There are more efficient and accurate methods for solving linear	 of a matrix into a product of matrices. Factorizations can be useful for solving A² = δ, or unders the properties of a matrix. We explore a few matrix factorizations throughout this co In this section, we factor a matrix into lower and into up 	tanding urse.	•	•	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	•	•
• Recall that we could solve $A \vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ • This requires computation of the inverse of an $n \times n$ matrix, which is especially difficult for large n . • Instead we could solve $A \vec{x} = \vec{b}$ with Gaussian Elimination, but this is not efficient for large n . • There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations.	of a matrix into a product of matrices. • Factorizations can be useful for solving $AZ = \overline{b}$, or under the properties of a matrix. • We explore a few matrix factorizations throughout this co in this section, we factor a matrix into lower and into up triangular matrices.	tanding urse, per	- - - - - - - - - - - -	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		• • • • • •
• Recall that we could solve $A\vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ • This requires computation of the inverse of an n × n matrix, which is especially difficult for large n. • in the dwe could solve $A\vec{x} = \vec{b}$ with Gaussian Elimination, but this is not efficient for large n. • There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations.	of a matrix into a product of matrices. • Factorizations can be useful for solving $A\overline{x} = \overline{b}_i$ or under the properties of a matrix factorizations throughout this co • In this section, we factor a matrix into lower and into up triangular matrices.	tanding urse. per									
 Recall that we could solve A[±] = [±] by using: μ[±] = Λ⁻¹b[±] This requires computation of the inverse of an n× n matrix, which is especially difficult for large n. interative could solve A[±] = b[±] with Gaussian Elimination, but this is not efficient for large n. there are more efficient and accurate methods for solving linear solvems that rely on matrix factorizations. 	of a matrix into a product of matrices. • Factorizations can be useful for storing $A\vec{x} = \vec{b}_i$ or unders the properties of a matrix • We explore a few matrix factorizations throughout this co • In this section, we factor a matrix into lower and into up triangular matrices.	tanding urse. per	0 0		• •						
 Recall that we could solve A^x = ^x/_b by using <i>x</i> = Δ⁻¹b This requires computation of the inverse of an n× n matrix, which is especially difficult for large n. and the dwe could solve A^x = b with Gaussian Elimination, but this is not efficient for large n. we are more efficient and accurate methods for solving linear solves that rely on matrix factorizations. 	of a matrix into a product of matrices. • Factorizations can be useful for storing $A\vec{x} = \vec{b}_i$ or unders the properties of a matrix • We explore a few matrix factorizations throughout this co • In this section, we factor a matrix into lower and into up triangular matrices.	tanding urse, per	• •	•	• •	•	• •	• •	•	•	•
 Recall that we could solve A^x = b^x by using <i>μ</i> = <i>μ</i>−¹b^x This requires computation of the inverse of an <i>n</i>× <i>n</i> matrix, which is especially difficult for large <i>n</i>. and the ave could solve A^x = b^x with classistin Elimination, but this is not efficient for large <i>n</i>. there are more efficient and accurate methods for solving linear systems that rely on matrix factorizations. 	of a matrix into a product of matrices. • Factorizations can be useful for solving $A\vec{x} = \vec{b}_i$ or unders the properties of a matrix • We explore a few matrix factorizations throughout this co- • In this section, we factor a matrix into lower and into up triangular matrices.	tanding urse. per	• •	•	• •	•	• •	• •	•	•	•
 Recall that we could solve A^x = b^x by using <i>μ</i> = <i>μ</i>−¹b^x This requires computation of the inverse of an <i>n</i>× <i>n</i> matrix, which is especially difficult for large <i>n</i>. and the ave could solve A^x = b^x with classistin Elimination, but this is not efficient for large <i>n</i>. there are more efficient and accurate methods for solving linear systems that rely on matrix factorizations. 	enartix into a product of matrices. • Factorizations can be useful for solving AZ = B, or unders the properties of a matrix. • We explore a few matrix factorizations throughout this of • In this section. we factor a matrix into lower and into up triangular matrices. ************************************	tanding urse. per	· ·	•	· ·	•	· ·	· ·	•	•	•
e Recall that we could solve $A \vec{x} = \vec{b}$ by using $\vec{x} = A^{-1}\vec{b}$ 1. This requires computation of the inverse of an n x n matrix, which is especially difficult for large n. 2. There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations. we want to be a state of the system state rely on the system state of the system state rely on the system state of the system state rely on the system state of the system state rely on the system state of the system state rely on the system state of the system state rely on the system state of the system	of a matrix into a product of matrices. • Factorizations can be useful for storing AZ = B, or unders the properties of a matrix. • We explore a few matrix factorizations throughout this of • In this section, we factor a matrix into lower and into up triangular matrices. Emeral 500.13	tanding urse. per	· ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	· ·	•	•	• • •
e Recall that we could solve $A_n^x = \tilde{b}$ by using: $\mathcal{L} = \mathcal{L} - \tilde{b}$ 1. This requires computation of the inverse of an n x n matrix, which is especially difficult for large n. a. include we could solve $A_n^x = \tilde{b}$ with Gaussian Elimination, but this is include the area more efficient and accurate methods for solving linear solutions that rely on matrix factorizations. We want that rely on matrix factorizations is a solution of the inverse of a solution of the in	 of a matrix into a product of matrices. a Factorizations can be useful for storing AZ = B₁ or unders the properties of a matrix. b We explore a few matrix factorizations throughout this occurs. b In this section, we factor a matrix into lower and into up triangular matrices. 	tanding urse. ever	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	•	0 0 0
 Recall that we could solve A^x = ^x/_b by using: # = A⁻¹δ 1. This requires computation of the inverse of an n × n matrix, which is expecting difficult for large n. a. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. a. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. a. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. a. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. b. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. b. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. b. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. b. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. b. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. b. inclusion of the inverse of an n × n matrix, which is expecting difficult for large n. b. inclusion of the inverse of an n × n matrix difficult for large n. b. inclusion of the inverse of an n × n matrix difficult for large n. b. inclusion of the inverse of an n × n matrix difficult for large n. c. inclusion of the inverse of an n × n matrix difficult for large n. c. inclusion of the inverse of an n × n watrix difficult for large n. d. inclusion of the inverse of an n × n × n × n × n × n × n × n × n ×	of a matrix into a product of matrices. • Factorizations can be useful for storing AZ = B, or unders the properties of a matrix. • We explore a few matrix factorizations throughout this could be a storing AZ = B, or unders and into up triangular matrices. • In this section, we factor a matrix into lower and into up triangular matrices.	tanding urse. per	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•	• • • • •
 Recall that we could solve A[±] = [¯]b by using: μ[±] = Λ[−]b[±] This requires computation of the inverse of an n × n matrix, which is especially difficult for large n. the area one efficient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one efficient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate methods for solving linear entropy of the area one officient and accurate and accurat	 of a matrix into a product of matrices. Factorizations can be useful for solving AZ = B₁ or unders the properties of a matrix. We explore a few matrix factorizations throughout this cet on the section, we factor a matrix into lower and into up triangular matrices. 	tanding urse. per	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·		 . .<	· · · · · · · · · · · · · ·	•	•	• • • • •
 Recall that we could solve A[#] = ^B/_δ by using: # = A⁻¹δ 1. This requires computation of the inverse of an n × n matrix, which is especially difficult for large n. a. the area one efficient and accurate methods for solving linear solutions that rely on matrix factorizations. 	 of a matrix into a product of matrices. Factorizations can be useful for solving AZ = B₁ or unders the properties of a matrix. We explore a few matrix factorizations throughout this cet on the section, we factor a matrix into lower and into up triangular matrices. 	tanding per	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·		 . .<	· · · · · · · · · · · · · · · · · · ·	•	•	

Triangular Matrices

 A rectangular matrix A is u Examples: 	upper triangular if $a_{i,j} = 0$ for $i > j$.	
$\begin{pmatrix} 1 & 5 & 0 \\ 0 & 2 & 4 \end{pmatrix},$	$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	

• A rectangular matrix A is lower triangular if $a_{i,j} = 0$ for i < jExamples:

 $\begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix},$ $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \end{pmatrix},$

Ask: Can you name a matrix that is both upper and lower triangular?

Section 2.5 Slide 138

The LU Factorization Theorem

If A is an $m \times n$ matrix that can be row reduced to echelon form without row exchanges, then A = LU. L is a lower triangular $m \times m$ matrix with 1's on the diagonal, U is an echelon form of A.

 $A = LU = \begin{pmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ * & * & 1 \end{pmatrix} \begin{pmatrix} * & * \\ 0 & * \\ 0 & 0 \end{pmatrix}$

Example: If $A \in \mathbb{R}^{3 \times 2}$, the LU factorization has the form:

Sectio	0.2.5	58de 134

Why We Can Compute the LU Factorization

Suppose \boldsymbol{A} can be row reduced to echelon form \boldsymbol{U} without interchanging rows. Then,

 $E_p \cdots E_1 A = U$ where the $E_{\rm j}$ are matrices that perform elementary row operations. They happen to be lower triangular and invertible, e.g. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}^{-1} =$

 $A = \underbrace{E_1^{-1} \cdots E_p^{-1}}_{=L} U = LU.$

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

Using the LU Decomposition

7. 6

Algorithm: construct $A = LU$, solve $A\vec{x} = LU\vec{x} = \vec{b}$ by:
 Forward solve for y in Ly = b .
 Backwards solve for x in Ux = y.

Example: Solve the linear system whose LU decomposition is given.

 $A = LU = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 16 \\ 2 \\ -4 \\ 6 \\ \end{pmatrix}$

Section 2.5 Slide 130

Therefore,

Section 2.5 Side 137

Soal:	given	A	and	ь,	solve	$A\vec{x}$	=	<i>b</i> .	for	x.	

 The True III Differential To the part of the data of th	т.	hm fo																									0	
 Here handless Here handles						sequen	ice of ro	w repla	acement			First deterr	comput nine th	e the ec e sequei	helon fo nce of n	orm U o ow oper	ations u	sed to	arrive at	ries tha : U.	t							
	opera	ations, if	possible											A =	4 -5 3	$\begin{bmatrix} 5 & -2 \\ -8 & 1 \\ 1 & 8 \end{bmatrix}$	~	-1 5 -3 1 2 -3 -3 -4 10	= A1									
	reduc	ces L to				- seque		ope						L	6 0 7 2 4 0 3	-3 1 -1 5 - 1 2 -	0 12 2 2 3 2 0	4 12 -: 4 -1 5 3 1 2] -2 -3					•				
	∘ In M.	ATH 155	4, the c	inly row	replace	ment op	peration	we car	n use is :	to				$\sim A_2$	0 0	0 2 0 4	$\begin{bmatrix} 1 \\ 7 \end{bmatrix}^{\sim} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 0 2	1 S									
								mitatio	n.			highli	ghted p															
			te the L	U facto	rization	of A .						into I	5.	ſ	1													
			A =	$\begin{pmatrix} 4 \\ -16 \end{pmatrix}$	-3 - 12 :	$-1 5 \\ 2 -1$	7)							[-	4 2 6 12 12	2 4 [5]												
				8	-6 -	12 22	2]							[_		1	[1 0 0	0									
	- 16 - 566-199											- 15 554	- 193	L-	1 -3 3 4	1 2 1	ad L=	1 -3 1	0 1									
1 1																												
1 1																												
1 1	• •																											
1 1																												
1 1																												
1 1																												
1 1																												
1 1	• •																											
1 1	• •																						•					
1 1	• •																											
1 1																												
1 1																												
	• •																											
	•																											
	• •																											
	• •																											
	• •																											
	• •																											
	• •																											
1 1																												
	• •							•															•					
	• •																		•									
	• •																											
. .																												
. .																												
. .																												
· · · · · · · · · · · · · · · · · · ·																												
	• •																											
	• •																											
	• •																											

S	umm	nary											Add	lition	al Ex	ample	e (if t	ime p	permi	its)										
	•	To sol	ve $A\vec{x} =$			7 - 15								Constru	ct the	LU dec	omposi							•	•	•		•	•	
		2. B	ackward	s solve	for \vec{x} in	$U\vec{x} = \bar{y}$											A =	(3 9 15	$^{-1}_{-5}$ $^{-1}_{2}$	4 15 10										
		1. R	educe A	to an e , if pos	chelon i sible.	form U	by a se			replacen								-6	2	-4)										
		2. P re The te	duces L	to I.						operatio														•						
		LU de Anoth	compos	tion th	at stud	ents m	ay find	helpful	I															•						
		studer	its may outube	find he	lpful is	availab	le from	MIT (OpenCo	ourseWa	are:													•						
Sect	ice 2.5	Side 10)											Section 2	5 Slide 14	1															
																			•					•						
									÷																					
•																														
																									•	•			•	

2.5 EXERCISES

In Exercises 1–6, solve the equation $A\mathbf{x} = \mathbf{b}$ by using the LU factorization given for *A*. In Exercises 1 and 2, also solve $A\mathbf{x} = \mathbf{b}$ by ordinary row reduction.

1.
$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -7 \\ 5 \\ 2 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 \\ 0 & 0 & -1 \end{bmatrix}$$
2.
$$A = \begin{bmatrix} 4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 6 & -8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -5 \\ 0 & -2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$
3.
$$A = \begin{bmatrix} 2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

$$\mathbf{6.} \ A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 \\ -5 & 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find an LU factorization of the matrices in Exercises 7–16 (with L unit lower triangular). Note that MATLAB will usually produce a permuted LU factorization because it uses partial pivoting for numerical accuracy.

7. $\begin{bmatrix} 2 & 5 \\ -3 & -4 \end{bmatrix}$	$8. \begin{bmatrix} 6 & 9 \\ 4 & 5 \end{bmatrix}$
$9. \begin{bmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6 \end{bmatrix}$	$10. \begin{bmatrix} -5 & 3 & 4 \\ 10 & -8 & -9 \\ 15 & 1 & 2 \end{bmatrix}$
11. $\begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{bmatrix}$	$12. \begin{bmatrix} 2 & -4 & 2 \\ 1 & 5 & -4 \\ -6 & -2 & 4 \end{bmatrix}$
$13. \begin{bmatrix} 1 & 3 & -5 & -3 \\ -1 & -5 & 8 & 4 \\ 4 & 2 & -5 & -7 \\ -2 & -4 & 7 & 5 \end{bmatrix}$	$14. \begin{bmatrix} 1 & 4 & -1 & 5 \\ 3 & 7 & -2 & 9 \\ -2 & -3 & 1 & -4 \\ -1 & 6 & -1 & 7 \end{bmatrix}$
$15. \begin{bmatrix} 2 & -4 & 4 & -2 \\ 6 & -9 & 7 & -3 \\ -1 & -4 & 8 & 0 \end{bmatrix}$	$16. \begin{bmatrix} 2 & -6 & 6 \\ -4 & 5 & -7 \\ 3 & 5 & -1 \\ -6 & 4 & -8 \\ 8 & -3 & 9 \end{bmatrix}$

17. When A is invertible, MATLAB finds A^{-1} by factoring A = LU (where L may be permuted lower triangular), inverting L and U, and then computing $U^{-1}L^{-1}$. Use this method to compute the inverse of A in Exercise 2. (Apply the algorithm of Section 2.2 to L and to U.)

18. Find A^{-1} as in Exercise 17, using A from Exercise 3.

 $A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ 0 & -3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ $4. A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$ $5. A = \begin{bmatrix} 1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -4 & -1 & 9 & 8 \\ -4 & -1 & 9 & 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 3 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -4 & 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -4 & -3 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Section 2.8 : Subspaces of \mathbb{R}^n

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. Subspaces, Column space, and Null spaces
- 2. A basis for a subspace.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Determine whether a set is a subspace.
- 2. Determine whether a vector is in a particular subspace, or find a vector in that subspace.
- 3. Construct a basis for a subspace (for example, a basis for Col(A))

Motivating Question

Given a matrix A, what is the set of vectors \vec{b} for which we can solve $A\vec{x}=\vec{b}?$

Section 2.8 Slide 152

Section 2.8 Slide 151

																									5 9	/18 - 9/2	22 2.3	,2.4	W\$2.2	1,2.3	2.5		WS2.4,3	2.5	2.8	3
													Тор	oics ar	id Obj	ective	s								6 9	/25 - 9/2	29 2.9		W\$2.8	1,2.9	3.1,3.2	2	W\$3.1,3	3.2	3.3	3
				Sect	tion 2	8 · Si	ubspac	es of	\mathbb{R}^{n}					Topics											7 1	0/2 - 10	/6 4.9		W\$3.3	1,4.9	5.1,5.2	2	W\$5.1,5	5.2	5.2	2
				5000			atrix Algel		1.4					1. Sub	cover the ispaces, i asis for a	Column	space, a		spaces						8 1	0/9 - 10	/13 Br	ak	Break		Exam	2, Review	Cancelle	ed	5.3	3
•					Math	1554 Lin	iear Algeb	בזמ						do the f 1. Det 2. Det vec 3. Con Motival	topics co ollowing. ermine v tor in the istruct a ting Que matrix A	whether whether at subsp basis fo estion	a set is a a vector ace. r a subsj	a subspa is in a p pace (for	dents are ce. articular example ors \vec{b} for	subspace , a basis	, or find for Col(a A))							rs	Fr	fd	ay	2	1		•
	s	rsion 2.8 5	lde 151										Section (2.8 5164.25															-			-	1		~	
0																												T T	M	hΠ	nn	6	de	TIC	2	
																									-	U				1		and the second	1 million	J.J.C		
																												Ш	Ш	W	\odot	TIP	M.			
•																									•	NATIONAL D	ILICOLA CO									١.
	Sub	sets of	Rn								Subsp	aces in	R ⁿ																							
			efinition -								- -	Definition																								
		A	subset of	ℝ ⁿ is any	collection	of vectors	s that are i	in R ⁿ .				A subset <i>E</i> and vector $1. c \vec{u} \in$	r addition H	a subspa . That is:	te if it is cli for any c	osed unde $\in \mathbb{R}$ and !	rscalarmı loril, il ∈ J	ltiplies H.																		
											L	2. il + i]																		
											Exc	te that con ample 1: \	Which of	the follow	ng subsets	s could be	a subspa	or. be of \mathbb{R}^2 ?																		
												1						_																		
												a) the uni	1 R square	b) a line ti	sassing throug is origin	h c)al	ine that doesn brough the ori	't pass gin																		
•	Berline 2	1 30ao 213									Instar 1.8	Shak LM																								Î
										•			•													•	•									
																•							•				• •					•				
																							•				•									
0																					•						•									
																							•				• •					•				
0																											•									
																											•									
																											•					•				
																											•					•				
•																																				

Subsets of \mathbb{R}^n	iubspaces in \mathbb{R}^n	
Definition A subset of \mathbb{R}^n is any collection of vectors that are in \mathbb{R}^n .		
A subset of R ⁺ is any collection of vectors that are in R ⁺ .	A subset $H \text{ of } \mathbb{R}^n$ is a subspace if H is closed under scalar multiplies and vector addition. That is: for any $c \in \mathbb{R}$ and for $\vec{u}, \vec{v} \in H$, $1, c\vec{u} \in H$ $2, d + \vec{v} \in H$	
e.g.,	Note that condition 1 implies that the zero vector must be in <i>H</i> . Example 1: Which of the following subsets could be a subspace of R ² 7	
*three vectors		
	a) the unit square b) intra passing through the digits	
Section 2.4 Solid 133	one ongan one ongan New 3.8 Sala SM	
*the span of three vectors		
*the set containing only		
the zero vector		
*all vectors in R^2 that		
are either on the x-axis or on the y-axis		

The Column Space and the Null Space of a Matrix Example Example (continued) Recall: for $\vec{v}_1, \dots, \vec{v}_p \in \mathbb{R}^n$, that $\text{Span}\{\vec{v}_1, \dots, \vec{v}_p\}$ is: Is \vec{b} in the column space of A^7 Using the matrix on the previous slide: is \vec{v} in the null space of A^7 This is a subspace, spanned by $\vec{v}_1, \dots, \vec{v}_p$. Image: Continued (interpretion) Image: Continue (interpretin) Image: Continue (interpretin)

spanned by $\vec{a}_1, \ldots, \vec{a}_n$.

2.	The by t	null s he set	space of all	of A, vector	Null z s \vec{x} th	1, is th at solv	e subs e $A\vec{x}$	pace c = Ő.	of \mathbb{R}^n s	panne	d																		
	-											Section 2.8	Side 157								Section 2.8	Side 158							
3 Side 1	56																												
														•					•								•		
•																													
				•													•								•			•	
																			•								•		
				•	•	•	•	•								•		•		•						•		•	
•																													
														•															
•																													
				•												•	•								•			•	
•				•	•	•	•	•								•		•		•						•		•	
•																													

Basis

Example

- Definition	 	
A basis for a subs vectors in <i>H</i> that	et of linearly	independent

Construct a basis for NullA and a basis for ColA.

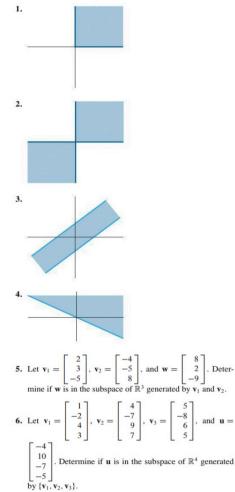
	[-3	6	-1	1	-7		[1	$^{-2}$	0	$^{-1}$	3	
A =	1	-2	2	3	-1	\sim	0	0	1	2	-2	
A =	2	$^{-4}$	5	8	$^{-4}$		0	0	0	0	0	

Example

Section 2.8 Slide 159

 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ The set $H = \{$ $\in \mathbb{R}^4 \mid x_1 + 2x_2 + x_3 + 5x_4 = 0\}$ is a subspace. x_4 a) H is a null space for what matrix A? b) Construct a basis for H.

Section 2.8 Slide 160


																•	•	•			•	•
•																•	•	•			•	•
•																•	•	•			•	•
•																•	•	•			•	•
+		•	•													•	•	•				
		•	•													•	•	•				
															•	•	•	•	•			•
															•	•	•	•	•			•
															•	•	•	•	•			•
															•	•	•	•	•			•
															•				•			

				-																														
L		A sub	-					in l	ℝ ⁿ th	hat ha	as thr	ee pi	roper	ties:																				
		a. Th																																
		b. Fo											in I	,															x31	/				
		с. ге	or each	um	II a	nu ea	ach s	cala	10,1	ne ve	ctor	cu is	in r	1.								• •												
																												/		\frown	×			
																					•					/	/	~		\langle		\checkmark	/	
																					•					<	\langle	v ₁		~	V 2	/		
																											X		0	\succ	-			
																											/	\land	/			X	2	
																											x_1							
																										FIG	URE	1						
																										Spa	n {v	1, v ₂ }	as a	a pla	ne th	nroug	h	
																										the	origi	in.						
				0		0																• •										•		• •
																						• •										•		
	_												٨	dditi	onal	Type	nle (:	f tim	a ner	nite)												•		
	Theo The p	orem Divotal co	lumns a	matrix .	A form	a basis	for the	e Colui	nn spa	ce of A			A																			•		
		he pivota	column	s of A,	not the	pivota	l colum	nns of t	the Ech	ielon				Let	$V = \left\{ \right.$	$\begin{pmatrix} a \\ b \end{pmatrix} \in$	$\mathbb{R}^2 \mid a$	b = 0	. Is V a	subspa	ce?													
1	form. Theo																																	
	Supp	ose that i	he matri	x A ha	reduce	d eche	lon forr	$m\begin{bmatrix}I\\0\end{bmatrix}$	$\begin{bmatrix} F \\ 0 \end{bmatrix}$, in	block																								
ļ	matri. of	$\begin{bmatrix} x \text{ form. } \\ T \end{bmatrix}$.	nen a ba	asis of t	ne Null	space	ot A is	given	by the	column	IS																							
1	The a	ssumptio																																
1	rew a	re all free	. I nis ca	in be as	sumea,	atter t	ne excr	nange	or colui	mns.																								
																																-		
																										•						•		• •
2	4 Sid	e 161											Sect	ion 2.8 S	Ede 162																	•		
																																•		
																					•											•		
																																•		
				-		-				-	-								-	-		. •			-	-	-		-	-	-			- •
					•		•																					•				•		
					•		•															• •										•		• •
					•		•					•									•	• •										•		
																																•		
								-		-		~	~												-	-	-	-	~	-	-	-		
	•																																	
	•																																	
	•		•	•	•		•	•	0	•	•												٠											
	•	0	•	•	0	0	0	0	0	0	0	•	•	•	•	0	•	•	•	•		••••		•	0	•	•	•	•	•	•			• •
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	• •
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• •	• •

																												•								
	E	XA	M	PLI	E 6	1	Find	lal	basi	is fo	or th	he n	ull	spa	ce	of th	he 1	nati	rix																	
														-									-	ć					-	-				•		
									A	_	-	1	6 -2 -4		2	3	_	1			[A	0].	~ [{			-1 2	$-2 \\ 0$	0		2 X2	-	<i>x</i> ₄	+ 3		0	
									A	_		2	-4		5	8	_	4			L	1	L		0 0	0	0	-						0 = 0	0	
											L.													•			·		•	•	. '		•	•		
															•							•						•	•	•			•			
																										•		•					•	•		
																										•		•						•		
																															•	•				
															•							•							•		•	•				
	0	0																									•	•	•	•		•			0	
																															•					
0																															•					
																												•								
																											•	•		•			•			
															•							•				•		•	•		•	•	•		•	
		0																			•	•			•				•		•	•	•			
																						•							•		•	•				
																												•		•						
																												•								
																															•					
																												•								
																											•	•		•			•			
																												•								
•																																				
																												•								
				-								-																								

2.8 EXERCISES

Exercises 1–4 display sets in \mathbb{R}^2 . Assume the sets include the bounding lines. In each case, give a specific reason why the set H is not a subspace of \mathbb{R}^2 . (For instance, find two vectors in H whose sum is not in H, or find a vector in H with a scalar multiple that is not in H. Draw a picture.)

7. Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\ -8\\ -8\\ 11 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3\\ 8\\ -7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -4\\ 6\\ -7 \end{bmatrix}$,
 $\mathbf{p} = \begin{bmatrix} 6\\ -10\\ 11 \end{bmatrix}$, and $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.
a. How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
b. How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
b. How many vectors are in $Col A$?
c. Is \mathbf{p} in $Col A$? Why or why not?
 $\begin{bmatrix} -3\\ -3 \end{bmatrix}$ $\begin{bmatrix} -2\\ -2 \end{bmatrix}$ $\begin{bmatrix} 0\\ 0 \end{bmatrix}$

Γ.

27

г 27

$$\begin{bmatrix} 1\\ 14\\ -9 \end{bmatrix}$$
. Determine if **p** is in Col A, where $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

- 9. With A and p as in Exercise 7, determine if p is in Nul A.
- 10. With $\mathbf{u} = (-2, 3, 1)$ and A as in Exercise 8, determine if \mathbf{u} is in Nul A.

In Exercises 11 and 12, give integers p and q such that Nul A is a subspace of \mathbb{R}^p and Col A is a subspace of \mathbb{R}^q .

	3	2	1	-5
11. $A =$	-9	-4	1	7
L	9	2	-5	1_
1	I	2	3	1
12 4	4	5	7	
12. <i>A</i> =	-5	$^{-1}$	0	
	2	7	11	
	-			_

- 13. For A as in Exercise 11, find a nonzero vector in Nul A and a nonzero vector in Col A.
- 14. For A as in Exercise 12, find a nonzero vector in Nul A and a nonzero vector in Col A.

Determine which sets in Exercises 15–20 are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify each answer.

15.
$$\begin{bmatrix} 5\\-2 \end{bmatrix}, \begin{bmatrix} 10\\-3 \end{bmatrix}$$
 16. $\begin{bmatrix} -4\\6 \end{bmatrix}, \begin{bmatrix} 2\\-3 \end{bmatrix}$
17. $\begin{bmatrix} 0\\1\\-2 \end{bmatrix}, \begin{bmatrix} 5\\-7\\4 \end{bmatrix}, \begin{bmatrix} 6\\3\\5 \end{bmatrix}$ **18.** $\begin{bmatrix} 1\\1\\-2 \end{bmatrix}, \begin{bmatrix} -5\\-1\\2 \end{bmatrix}, \begin{bmatrix} 7\\0\\-5 \end{bmatrix}$
19. $\begin{bmatrix} 3\\-8\\1 \end{bmatrix}, \begin{bmatrix} 6\\2\\-5 \end{bmatrix}$
20. $\begin{bmatrix} 1\\-7\\-7 \end{bmatrix}, \begin{bmatrix} 3\\-4\\7\\5 \end{bmatrix}, \begin{bmatrix} -2\\7\\5 \end{bmatrix}, \begin{bmatrix} 0\\8\\9 \end{bmatrix}$

154 CHAPTER 2 Matrix Algebra

In Exercises 21 and 22, mark each statement True or False. Justify each answer.

- **21.** a. A subspace of \mathbb{R}^n is any set H such that (i) the zero vector is in H, (ii) \mathbf{u} , \mathbf{v} , and $\mathbf{u} + \mathbf{v}$ are in H, and (iii) c is a scalar and $c\mathbf{u}$ is in H.
 - b. If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in \mathbb{R}^n , then Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is the same as the column space of the matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p]$.
 - c. The set of all solutions of a system of *m* homogeneous equations in *n* unknowns is a subspace of ℝ^m.
 d. The columns of an invertible *n* × *n* matrix form a basis
 - for \mathbb{R}^n .
 - e. Row operations do not affect linear dependence relations among the columns of a matrix.
- 22. a. A subset H of ℝⁿ is a subspace if the zero vector is in H.
 b. Given vectors v₁,..., v_p in ℝⁿ, the set of all linear combinations of these vectors is a subspace of ℝⁿ.
 - c. The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^n .
 - d. The column space of a matrix A is the set of solutions of $A\mathbf{x} = \mathbf{b}$.
 - e. If *B* is an echelon form of a matrix *A*, then the pivot columns of *B* form a basis for Col *A*.

Exercises 23–26 display a matrix A and an echelon form of A. Find a basis for Col A and a basis for Nul A.

23. <i>A</i> =	4 6 3	5 5 4	9 1 8	$\begin{bmatrix} -2 \\ 12 \\ -3 \end{bmatrix}$	~	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	2 1 0	6 5 0	$\begin{bmatrix} -5 \\ -6 \\ 0 \end{bmatrix}$
24. <i>A</i> =	$\begin{bmatrix} -3 \\ 2 \\ 3 \end{bmatrix}$	9 -6 -9	-2 4 -2	-7 8 2	~	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$-3 \\ 0 \\ 0$	6 4 0	9 5 0
25. <i>A</i> =	$\begin{bmatrix} 1 \\ -1 \\ -2 \\ 3 \end{bmatrix}$	4 2 2 6	8 7 9	-3 3 5 -5	-7 4 5 -2				
~	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	4 2 0 0	8 5 0 0	0 0 - 1 0	$\begin{bmatrix} 5\\-1\\4\\0 \end{bmatrix}$				

- 27. Construct a nonzero 3 × 3 matrix A and a nonzero vector b such that b is in Col A, but b is not the same as any one of the columns of A.
- **28.** Construct a nonzero 3×3 matrix A and a vector **b** such that **b** is *not* in Col A.
- **29.** Construct a nonzero 3×3 matrix A and a nonzero vector **b** such that **b** is in Nul A.
- 30. Suppose the columns of a matrix A = [a₁ ··· a_p] are linearly independent. Explain why {a₁,..., a_p} is a basis for Col A.

In Exercises 31-36, respond as comprehensively as possible, and justify your answer.

- **31.** Suppose *F* is a 5×5 matrix whose column space is not equal to \mathbb{R}^5 . What can you say about Nul *F*?
- **32.** If *R* is a 6 × 6 matrix and Nul *R* is *not* the zero subspace, what can you say about Col *R*?
- **33.** If Q is a 4 × 4 matrix and Col $Q = \mathbb{R}^4$, what can you say about solutions of equations of the form $Q\mathbf{x} = \mathbf{b}$ for \mathbf{b} in \mathbb{R}^4 ?
- **34.** If *P* is a 5×5 matrix and Nul *P* is the zero subspace, what can you say about solutions of equations of the form $P\mathbf{x} = \mathbf{b}$ for \mathbf{b} in \mathbb{R}^{5} ?
- **35.** What can you say about Nul *B* when *B* is a 5×4 matrix with linearly independent columns?
- **36.** What can you say about the shape of an $m \times n$ matrix *A* when the columns of *A* form a basis for \mathbb{R}^m ?

[M] In Exercises 37 and 38, construct bases for the column space and the null space of the given matrix A. Justify your work.

		3	-5	0	-1	3	1
37.	4	-7	9	-4	9	-11	
	A =	-5	7	-2	5	-7	
		3	-7	-3	4	0	
		Γ 5	2	0	-8	-87	
20	A =	4	1	2	-8	-9	
38.	A =	5	1	3	5	19	
		-8	-5	6	8	5	

WEB Column Space and Null Space

