Math 1554 Linear Algebra Fall 2022 Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS							
Name:	GI	ID Number:					
Student GT Email Addre	ss:		@gatech.edu				
Section Number (e.g. A3, G2, etc.) TA Name							
Circle your instructor:							
Prof Vilaca Da Rocha	Prof Kafer	Prof Barone	Prof Wheeler				
Prof Blumenthal Prof Sun Prof Shirani							

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- **Organize your work** in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose *A* is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select **true** if the statement is true for all choices of *A* and \vec{b} . Otherwise, select **false**.

(b) (4 points) Indicate whether the following situations are possible or impossible.

possible	impossible		
	0	A 7 \times 5 matrix A with linearly independent columns. $-$	Motex
\bigcirc		A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ that is not onto and its standard matrix has linearly independent columns.	nge of T
•	\bigcirc	$T: \mathbb{R}^3 \to \mathbb{R}^2 \text{ that is onto and its standard matrix has exactly}$ one non-pivotal column. $e \cdot g \cdot A = \begin{bmatrix} i & 0 & 0 \\ 0 & i & 0 \end{bmatrix} $	*= (R ^s
•	\bigcirc	Two non-zero matrices A, B of size 2×2 with $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.	
		$\begin{array}{c} \varrho \cdot \varrho \cdot \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \left[\begin{array}{c} 0 \end{array} \\] \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \left[\begin{array}{c} 0 \end{array} \\] \left[\end{array}] \left[\begin{array}{c} 0 \end{array} \\] \left[\begin{array}{c} 0 \end{array} \\] \left[\end{array}] \left[\end{array}] \left[\begin{array}{c} 0 \end{array} \\] \left[\end{array}] \left[$	

You do not need to justify your reasoning for questions on this page.

(c) (2 points) Let

1	1	3	0	$ 1\rangle$
	0	3h	3	6
	0	0	1	2

be an augmented matrix of a system of linear equations. For which values of *h* does the system have a free variable? *Choose the best option*.

0 only

 $\bigcirc \frac{1}{3}$ only

 \bigcirc 1 only

 $\bigcirc\,$ for all values of h

 $\bigcirc\,$ for no values of h

- (d) (2 points) A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^1$ maps each of the standard unit vectors $\vec{e_1}, \vec{e_2}$ and $\vec{e_3}$ to 1. Which of the following statements is TRUE? *Select only one.*
 - \bigcirc *T* is one-to-one.
 - \bigcirc *T* is not onto.
 - The solution set of $T(\vec{x}) = \vec{0}$ spans a plane in \mathbb{R}^3 .
 - \bigcirc The range of *T* is {1}.

You do not need to justify your reasoning for questions on this page.

2. (4 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$ and sketch (a) a vector \vec{b} such that $A\vec{x} = \vec{b}$ is consistent, and (b) the set of solutions to $A\vec{x} = \vec{0}$.

3. (2 points) Consider the linear system in variables x_1, x_2, x_3 with unknown constants below.

$$a_1x_1 + a_2x_2 + a_3x_3 = b_1$$

$$c_1x_1 + c_2x_2 + c_3x_3 = b_2$$

Which of the following statements about the solution set of this system are possible? *Select all that apply.*

You do not need to justify your reasoning for questions on this page.

- 4. Fill in the blanks.
 - (a) (3 points) Let *A* be a coefficient matrix of size 2×2 and *B* be a coefficient matrix of size 3×2 . Construct an example of two augmented matrices $\left[A|\vec{b}\right]$ and $\left[B|\vec{d}\right]$ which are both in RREF and such that the systems $A\vec{x} = \vec{b}$ and $B\vec{x} = \vec{d}$ each have the exact same unique solution $x_1 = 3$ and $x_2 = 6$. If this is not possible write NP in each box.

$$\begin{bmatrix} A | \vec{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 & | \vec{z} \\ 0 & 1 & | \vec{6} \end{bmatrix} \begin{bmatrix} B | \vec{d} \end{bmatrix} = \begin{bmatrix} 1 & 0 & | \vec{3} \\ 0 & 1 & | \vec{6} \end{bmatrix}$$

(b) (2 points) Let
$$\vec{u}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\vec{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Find c_1, c_2 such that $\vec{b} = c_1 \vec{u}_1 + c_2 \vec{u}_2$.
 $c_1 = \boxed{1}$ $c_2 = \boxed{3}$
 $C_1 \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_2 \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \end{bmatrix} \right)$
 $\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} + 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \stackrel{?}{=} \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)$
 $\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} + 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \stackrel{?}{=} \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)$

You do not need to justify your reasoning for questions on this page.

5. (8 points) Let *T* be a linear transformation that maps \vec{v}_1 to $T(\vec{v}_1)$ and \vec{v}_2 to $T(\vec{v}_2)$, where

$$\vec{v}_1 = \begin{pmatrix} 2\\ -1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} -1\\ 1 \end{pmatrix}, \quad T(\vec{v}_1) = \begin{pmatrix} 1\\ 3\\ 0\\ 1 \end{pmatrix}, \quad T(\vec{v}_2) = \begin{pmatrix} 3\\ -1\\ -2\\ 1 \end{pmatrix}.$$

(i) What is domain and codomain of *T*?

- 6. Show all work for problems on this page.
- matrix A voue Zts. Proots. (a) (3 points) For what value of k will the columns of A span a plane in \mathbb{R}^3 ?

 $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & k \end{pmatrix}$

$$\begin{cases} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & k \\ 0 & 1 & k \\ 0 & 1 & 3 \\ \end{cases} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & k \\ 0 & 1 & 3 \\ 0 & 0 & 3 - k \\ \end{pmatrix}$$

(b) (4 points) Find b and c such that AB = BA.

$$A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & b \\ c & 0 \end{pmatrix}$$
$$b = \underbrace{4} \qquad c = \underbrace{4}$$
$$\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & b \\ c & 0 \end{pmatrix} = \begin{pmatrix} 1 & b \\ c & 0 \end{pmatrix} \begin{vmatrix} 3 & 4 \\ c & 0 \end{pmatrix} \begin{vmatrix} 3 & 4 \\ c & 0 \end{pmatrix} = \begin{pmatrix} 1 & b \\ c & 0 \end{pmatrix} \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 3 + 4c \qquad 3b \\ 1 + 2c \qquad b \end{pmatrix} = \underbrace{3 + b \qquad 4 + 2b}_{3c}$$
$$3 - 4c \qquad b = 4c \qquad b = 4c$$

7. (4 points) Show your work for problems on this page.

 $X = \begin{bmatrix} 25 \\ -3t \\ 5 \\ t \end{bmatrix} = 5 \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

Write down the parametric vector form for solutions to the homogeneous equation $A\vec{x} = \vec{0}$ $A = \begin{bmatrix} 1 & -1 & -2 & -3 & -1 \\ 0 & 1 & 0 & 3 & 1 \\ -1 & 1 & 2 & 3 & 2 \end{bmatrix}$

8. (4 points) Determine whether the set of vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent. *Justify your answer in the space below.*

$$\vec{v}_1 = \begin{bmatrix} 1\\-1\\5 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2\\-1\\8 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} -2\\2\\-9 \end{bmatrix}$$

linearly independent

 \bigcirc linearly dependent

$$\begin{bmatrix} 1 & 2 & -2 \\ -1 & -1 & 2 \\ 5 & 8 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$pi \text{ Not in every column of the matrix}$$

$$A = \left(u_1 v_2 v_3 \right) \implies coks \text{ In ind.}$$

This page may be used for scratch work. Please indicate clearly on the problem if you would like your work on this page to be graded. Loose scrap paper is not permitted. This page must **NOT be detached** from your exam booklet at any time.

This page may be used for scratch work. Please indicate clearly on the problem if you would like your work on this page to be graded. Loose scrap paper is not permitted. This page must **NOT be detached** from your exam booklet at any time.