

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:

Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler

Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false

If A has a pivot in every column then the system $A \vec{x}=\vec{b}$ has could be a unique solution.

Suppose A is a 6×4 matrix with 4 pivots, then there is b such that $A \vec{x}=\vec{b}$ has no solution.

The sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $\left\{\vec{v}_{1}+\vec{v}_{2},-\vec{v}_{1}-\vec{v}_{2}\right\}$ have the same span.
If A and B are square $n \times n$ matrices, then $A^{2}-B^{2}=(A-B)(A+B)$.
The matrix equation $A \vec{x}=\overrightarrow{0}$ is always consistent. $\vec{x}=\overrightarrow{0} \quad A B \neq B A$
Suppose $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ are nonzero vectors in \mathbb{R}^{n} and the sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, $\left\{\vec{v}_{1}, \vec{v}_{3}\right\}$, and $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ are all linearly independent. Then, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent.

If $A \vec{v}=0, A \vec{u}=0$ and $\vec{w}=3 \vec{v}-2 \vec{u}$, then $A \vec{w}=0$.

$$
\left.e \cdot q \cdot\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left|\begin{array}{l}
0 \\
1 \\
2
\end{array}\right|, \left\lvert\, \begin{array}{l}
1 \\
2 \\
1
\end{array}\right.\right)\right\}
$$

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\vec{x})=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{m}$. Then T is one-tofone.
outs
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible
A 7×5 matrix A with linearly independent columns. tall matres

A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that is not onto and its
standard matrix has linearly independent columns.
:---
one non-pivotal column.
ecg. $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
Two non-zero matrices A, B of size 2×2 with $A B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
(c) (2 points) Let

$$
\left(\begin{array}{ccc|c}
1 & 3 & 0 & 1 \\
0 & 3 h & 3 & 6 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

be an augmented matrix of a system of linear equations. For which values of h does the system have a free variable? Choose the best option.
0 only
$\frac{1}{3}$ only
○ 1 only
for all values of h
for no values of h
(d) (2 points) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ maps each of the standard unit vectors \vec{e}_{1}, \vec{e}_{2} and \vec{e}_{3} to 1 . Which of the following statements is TRUE? Select only one.
$\bigcirc T$ is one-to-one.
T is not onto.
The solution set of $T(\vec{x})=\overrightarrow{0}$ spans a plane in \mathbb{R}^{3}.
\bigcirc The range of T is $\{1\}$.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (4 points) Suppose $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 2\end{array}\right)$ and sketch (a) a vector \vec{b} such that $A \vec{x}=\vec{b}$ is consistent, and (b) the set of solutions to $A \vec{x}=\overrightarrow{0}$.
(a) a vector \vec{b}

$$
A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

(b) set of solutions

$$
\begin{aligned}
A x=0 \quad\left[\begin{array}{ll}
3 & 1 \\
6 & 2
\end{array}\right] & \sim\left[\begin{array}{ll}
3 & 1 \\
0 & 0
\end{array}\right] \\
\left.x=5 \left\lvert\, \begin{array}{c}
-1 / 3 \\
1
\end{array}\right.\right) \sim\left[\begin{array}{c}
-1 \\
3
\end{array}\right] & \sim\left[\begin{array}{cc}
1 & 1 / 3 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

3. (2 points) Consider the linear system in variables x_{1}, x_{2}, x_{3} with unknown constants below.

$$
\begin{aligned}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} & =b_{1} \\
c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} & =b_{2}
\end{aligned}
$$

Which of the following statements about the solution set of this system are possible? Select all that apply.The solution set is empty.The solution set is a single point.The solution set is a line
-inconsistentThe solution set is a plane

$$
\left[\begin{array}{lll|l}
a_{1} & a_{2} & a_{3} & b_{1} \\
c_{1} & c_{2} & c_{3} & b_{2}
\end{array}\right]
$$

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
4. Fill in the blanks.
(a) (3 points) Let A be a coefficient matrix of size 2×2 and B be a coefficient matrix of size 3×2. Construct an example of two augmented matrices $[A \mid \vec{b}]$ and $[B \mid \vec{d}]$ which are both in RREF and such that the systems $A \vec{x}=\vec{b}$ and $B \vec{x}=\vec{d}$ each have the exact same unique solution $x_{1}=3$ and $x_{2}=6$. If this is not possible write NP in each box.

$$
[B] \mid]=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

(b) (2 points) Let $\vec{u}_{1}=\binom{1}{-1}, \vec{u}_{2}=\binom{0}{1}$, and $\vec{b}=\binom{1}{2}$. Find c_{1}, c_{2} such that $\vec{b}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}$.

$$
\begin{aligned}
& c_{1}=1 \quad c_{2}=3 \\
& c_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\binom{1}{2} \\
& \text { Cher. } \\
& {\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+3\binom{0}{1} \stackrel{?}{=}=\binom{1}{2}} \\
& {\left[\begin{array}{cc|c}
1 & 0 & 1 \\
-1 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 3
\end{array}\right]}
\end{aligned}
$$

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (8 points) Let T be a linear transformation that maps \vec{v}_{1} to $T\left(\vec{v}_{1}\right)$ and \vec{v}_{2} to $T\left(\vec{v}_{2}\right)$, where

$$
\vec{v}_{1}=\binom{2}{-1}, \quad \vec{v}_{2}=\binom{-1}{1}, \quad T\left(\vec{v}_{1}\right)=\left(\begin{array}{c}
1 \\
3 \\
0 \\
1
\end{array}\right), \quad T\left(\vec{v}_{2}\right)=\left(\begin{array}{c}
3 \\
-1 \\
-2 \\
1
\end{array}\right)
$$

(i) What is domain and codomain of T ?
(ii) Is it true that $\mathbb{R}^{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$? yes
domain is \square codomain is \squareno
(iii) Write $\vec{e}_{1}=\binom{1}{0}$ and $\vec{e}_{2}=\binom{0}{1}$ as linear combinations of \vec{v}_{1} and \vec{v}_{2}.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & -1 & 1 \\
-1 & 1 \\
0
\end{array}\right)-\left(\begin{array}{ccc}
-1 \\
0 & 1 & 1 \\
1 & 1
\end{array}\right) \sim\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
2-1
\end{array}\right]+\left[\begin{array}{l}
-1 \\
-1
\end{array}\right)=(10)} \\
& {\left[\begin{array}{ccc}
2 & -1 \\
-1 & 1 \\
1
\end{array}\right) \sim\left[\left.\begin{array}{ll}
0 & 1 \\
-1 & 1
\end{array} \right\rvert\, \begin{array}{l}
2 \\
1
\end{array}\right) \sim\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2
\end{array}\right]} \\
& \binom{2}{-1}+2\binom{-1}{1}=\binom{0}{1} \sim \\
& \text { (iv) What is the standard matrix of } T \text { ? }
\end{aligned}
$$

Midterm 1. Your initials: \qquad
6. Show all work for problems on this page.
(a) (3 points) For what value of k will the columns of A span a plane in \mathbb{R}^{3} ?

$$
\left.\begin{array}{c}
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 2 \\
0 & 1 & k
\end{array}\right) \\
k=3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 2 \\
0 & 1 & k
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & k \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & k \\
0 & 0 & 3-k
\end{array}\right]
$$

(b) (4 points) Find b and c such that $A B=B A$.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & b \\
c & 0
\end{array}\right) \\
& b=4 \quad c=1 \\
& {\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
c & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & b \\
c & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right)} \\
& {\left[\begin{array}{cc}
3+4 c & 3 b \\
1+2 c & b
\end{array}\right]=\left(\begin{array}{cc}
3+b & 4+2 b \\
3 c & 4 c
\end{array}\right]} \\
& 1+2 c=3 c \Rightarrow c=1 \quad b=4 c \stackrel{(c=1)}{\Rightarrow} b=4
\end{aligned}
$$

Midterm 1. Your initials: \qquad

$$
X=\left(\begin{array}{c}
2 s \\
-3 t \\
s \\
t \\
0
\end{array}\right)=s\left[\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1 \\
0
\end{array}\right)
$$

7. (4 points) Show your work for problems on this page. Write down the parametric vector form for solutions to the homogeneous equation $A \vec{x}=\overrightarrow{0} \hat{\sim}$

$$
A=\left[\begin{array}{ccccc}
1 & -1 & -2 & -3 & -1 \\
0 & 1 & 0 & 3 & 1 \\
-1 & 1 & 2 & 3 & 2
\end{array}\right]
$$

8. (4 points) Determine whether the set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent. Justify your answer in the space below.

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
8
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
-2 \\
2 \\
-9
\end{array}\right]
$$linearly dependent

$$
\left[\begin{array}{ccc}
1 & 2 & -2 \\
-1 & -1 & 2 \\
5 & 8 & -9
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & -2 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
11 & 2 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { pivot in every column of the matrix } \\
& \left.\qquad A=\left[u_{1} v_{2} v_{s}\right]\right\} \text { cols in ind. }
\end{aligned}
$$

This page may be used for scratch work. Please indicate clearly on the problem if you would like your work on this page to be graded. Loose scrap paper is not permitted. This page must NOT be detached from your exam booklet at any time.

This page may be used for scratch work. Please indicate clearly on the problem if you would like your work on this page to be graded. Loose scrap paper is not permitted. This page must NOT be detached from your exam booklet at any time.

