

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler
Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false

(b) (4 points) Indicate whether the following situations are possible or impossible.

Midterm 2. Your initials:
You do not need to justify your reasoning for questions on this page.
(c) (3 points) If possible, fill in the missing elements of the matrices below with numbers so that each of the matrices are singular. If it is not possible write NP in the space.

$$
\begin{aligned}
& \text { (i) } \\
& \text { gl (ii) } \\
& \left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& \text { (in) }\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 3 \\
1 & N P & 4
\end{array}\right) \\
& (i c i)\left(\begin{array}{lll}
2 & 3 & 8 \\
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right) \quad V_{1}+2 v_{2}=V_{3} \\
& \text { (iii) }\left[\begin{array}{lll}
2 & 3 & h \\
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 5 \\
2 & 3 & h \\
0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 5 \\
0 & -1 & h-10 \\
0 & 1 & 2
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 5 \\
0 & -1 & h-10 \\
0 & 0 & h-8
\end{array}\right] \quad \begin{array}{l}
h-8=0 \\
\Rightarrow h=8
\end{array}
\end{aligned}
$$

(d) (2 points) Let A be a 3×3 upper triangular matrix and assume that the volume of the parallepiped determined by the columns of A is equal to 1 . Which of the following statements is FALSE?A is invertible.The diagonal entries of A are either 1 or -1 .For every 3×3 matrix B we have $|\operatorname{det}(A B)|=|\operatorname{det}(B)|$.If B is a matrix obtained by interchanging two rows of A, then the volume of the parallelepiped determined by the columns of B is equal to 1 .

$$
\text { e.g. } A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 112 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Midterm 2. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (2 points) Suppose A and B are invertible $n \times n$ matrices. Find the inverse of the partitioned matrix

$$
\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\frac{0}{A^{-1}} & \frac{B^{-1}}{D}
\end{array}\right)
$$

$$
\left[\begin{array}{ll}
0 & A \\
B & 0
\end{array}\right]\left[\begin{array}{ll}
x & 1 \\
z & w
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

$\left.\Rightarrow \begin{array}{l}A Z=I \\ A W=0 \\ B X=0 \\ B Y=I\end{array}\right\} \Rightarrow \begin{aligned} & Z=A^{-1} \\ & W=0 \\ & X=0 \\ & Y=B^{-1}\end{aligned}$
3. (2 points) Suppose A is a $m \times n$ matrix and B is $m \times 5$ matrix. Find the dimensions of the matrix C in the block matrix

$$
\left(\begin{array}{ll}
A & B \\
I_{n} & C
\end{array}\right) .
$$

C has \bigcap rows and 5 columns.

In

Midterm 2. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
4. Fill in the blanks.
(a) (3 points) Give a matrix A whose column space is spanned by the vectors $\binom{1}{0}$ and $\binom{0}{1}$ and whose null space is spanned by $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. If this is not possible, write NP in the box.
(1)
$\operatorname{Nu} \mid A=\operatorname{span}\{\{i]\}$
\Rightarrow A has one
free variable
(3)
mu itiply to get
check. $\operatorname{col}(A)=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0\end{array}|,| \begin{array}{l}0 \\ 1\end{array}\right)\right\} ?$
yes bo k $(107,01$ we pivot cols of A.
(b) (3 points) Use the determinant to find all values of $\lambda \in \mathbb{R}$ such that the following matrix is singular.

$$
\int \overline{\operatorname{det} A=0}
$$

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 4 & 5 \\
\lambda & 2 & 3
\end{array}\right)
$$

$$
\lambda=4 / 3
$$

$$
\operatorname{det} A=1\left|\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right|-2\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|+\lambda\left|\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right|
$$

$$
=(12-10)-2(3-4)+\lambda(5-8)
$$

$$
=2+2-3 \lambda=0 \Rightarrow 3 \lambda=4 \Rightarrow \lambda=4 / 3
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { in } \operatorname{Nul}(A)} \\
& \Rightarrow A \cdot[1]=\overrightarrow{0} \\
& \text { (}(i) \text { is a sol.) }
\end{aligned}
$$

alt sols : Compute $\operatorname{det}(A-\lambda I)$ and complete the square.
$\int \begin{gathered}\text { Midterm } 2 . \text { Your initials: } \\ \text { You to no thee to justify your reasosoning for or questions on this page. }\end{gathered}$
5. (3 points) Find the value of h such that the matrix

$$
A=\left(\begin{array}{ll}
5 & h \\
1 & 3
\end{array}\right)
$$

$$
\begin{aligned}
\operatorname{det} A & =15-h \\
\operatorname{det} A & =16
\end{aligned}
$$

has an eigenvalue with algebraic multiplicity 2.

$$
h=-1
$$

$$
\uparrow \Rightarrow h=-1 .
$$

$$
\begin{aligned}
\operatorname{det} A & =\lambda^{2}-\operatorname{trace}(A) \cdot \lambda+\operatorname{det} A \\
& =\lambda^{2}-8 \lambda+\operatorname{det} A \\
& =(\lambda-C)^{2} \text { only if } C=4 \text { and } \operatorname{det} A=16
\end{aligned}
$$

6. (3 points) Let \mathcal{P}_{B} be a parallelogram that is determined by the columns of the matrix $B=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right)$, and \mathcal{P}_{C} be a parallelogram that is determined by the columns of the matrix $C=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)$. Suppose A is the standard matrix of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that maps \mathcal{P}_{B} to \mathcal{P}_{C}. What is the value of $|\operatorname{det}(A)|$?
$|\operatorname{det}(A)|=1 / 2$

$$
\operatorname{det} B=\operatorname{det}\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]=3-(-1)=4 \Rightarrow \text { area } P_{B}=4
$$

and

$$
\begin{aligned}
& \operatorname{det} C=\operatorname{det}\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right)=-1-1=-2 \Rightarrow \operatorname{area} P_{C}=2 \\
& |\operatorname{det}(A)| * \operatorname{area}\left(P_{B}\right)=\operatorname{area}\left(T\left(P_{B}\right)\right)=\operatorname{arca}\left(P_{C}\right) \\
& \Rightarrow|\operatorname{det} A| * 4=2 \Rightarrow|\operatorname{det} A|=1,2
\end{aligned}
$$

Midterm 2. Your initials: \qquad

$$
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 1 } = 0 } \\
{ x _ { 2 } = \text { free } } \\
{ x _ { 3 } = 0 }
\end{array} \left\{\begin{array}{l}
x_{1}=5 \\
x_{2}=5 \\
x_{3}=0
\end{array}\right.\right.
$$

7. (5 points) Show all work for problems on this page. Given that 4 is an eigenvalue of the matrix

$$
A=\left(\begin{array}{ccc}
6 & -2 & 2 \\
2 & 2 & -2 \\
1 & -1 & 4
\end{array}\right)
$$

find an eigenvector \vec{v} of A such that $A \vec{v}=4 \vec{v}$.

$$
\begin{aligned}
A-4 I & =\left[\begin{array}{ccc}
6-4 & -2 & 2 \\
2 & 2-4 & -2 \\
1 & -1 & 4-4
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & 2 \\
2 & -2 & -2 \\
1 & -1 & 0
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & -2 \\
0 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

8. (6 points) Find the LU-factorization of

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 2 & 5 \\
1 & -1 & 8 \\
2 & 8 & 6
\end{array}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & -4 / 3 & 1
\end{array}\right]
\end{aligned}
$$

$$
\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{1}{4}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+\frac{1}{4}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 4 \\
1 / 2 \\
1 / 4
\end{array}\right]
$$

Midterm 2. Your initials: \qquad
9. (6 points) Show all work for problems on this page.

Consider the Markov chain $\vec{x}_{k+1}=P \vec{x}_{k}, k=0,1,2, \ldots$.
Suppose P has eigenvalues $\lambda_{1}=1, \lambda_{2}=1 / 2$ and $\lambda_{3}=0$. Let \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} be eigenvectors corresponding to λ_{1}, λ_{2}, and λ_{3}, respectively:

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

Note: you may leave your answers as linear combinations of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.

$$
\begin{aligned}
& X_{3}=P^{3} \\
&=\frac{1}{2} P^{3} V_{1}+\frac{1}{2} P^{3} V_{2} \\
&=\frac{1}{2}(1)^{3} V_{1}+\frac{1}{2}\left(\frac{1}{2}\right)^{3} V_{2}=\frac{1}{2} V_{1}+\frac{1}{2} V_{1}+\frac{1}{16} v_{2} \\
& V_{1}+\frac{1}{16} V_{2}
\end{aligned}
$$

(ii) If $\vec{x}_{0}=\left(\begin{array}{l}1 / 4 \\ 1 / 2 \\ 1 / 4\end{array}\right)$, then what is \vec{x}_{1} ?

Hint: write \vec{x}_{0} as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 / 4 \\
1 & -1 & 1 & 1 / 2 \\
0 & 1 & 0 & 1 / 4
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 / 4 \\
0 & -1 & 2 & 1 / 4 \\
0 & 1 & 0 & 1 / 4
\end{array}\right]} \\
& \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 / 4 \\
0 & -1 & 2 & 1 / 4 \\
0 & 0 & 2 & 1 / 2
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 / 2 \\
0 & -1 & 0 & -1 / 4 \\
0 & 0 & 1 & 1 / 4
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 1 / 4 \\
0 & 0 & 1 & 1 / 4
\end{array}\right] \\
& \vec{X}_{0}=\left[\begin{array}{l}
1 / 4 \\
1 / 2 \\
1 / 4
\end{array}\right]=\frac{1}{2} V_{1}+\frac{1}{4} V_{2}+\frac{1}{4} V_{3} \quad \vec{X}_{1}=P X_{0}=\frac{1}{2} * 1 V_{1}+\frac{1}{4} * \frac{1}{2} V_{2}+\frac{1}{4} \cdot O V_{3} \\
& \text { (iii) If } \vec{x}_{0}=\left(\begin{array}{l}
1 / 4 \\
1 / 2 \\
1 / 4
\end{array}\right) \text {, then what is } \vec{x}_{k} \text { as } k \rightarrow \infty \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} V_{1}+\frac{1}{4}\left(\frac{1}{2}\right)^{k} y_{2} O a_{k \rightarrow \infty}
\end{aligned}
$$

