Math 1554 Linear Algebra Fall 2022

Midterm 3

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:	GTID Number:
Student GT Email Address:	@gatech.edu
Section Number (e.g. A3, G2, etc.)	TA Name
Circl	e your instructor:
Prof Vilaca Da Rocha Pro	f Kafer Prof Barone Prof Wheeler
Prof Blumenthal	Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- **Organize your work** in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose *A* is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select **true** if the statement is true for all choices of *A* and \vec{b} . Otherwise, select **false**.

true	false	
\bigcirc		A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.
	0	An invertible matrix A is diagonalizable if and only if its inverse A^{-1} is diagonalizable.
	\bigcirc	If $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, then \vec{u} is orthogonal to $(\vec{w} - \vec{v})$.
\bigcirc		If the vectors \vec{u} and \vec{v} are orthogonal then $\ \vec{u} + \vec{v}\ = \ \vec{u}\ + \ \vec{v}\ $.
0		If $\vec{y} \in \mathbb{R}^n$ is a nonzero vector and W is a subspace of \mathbb{R}^n , then $\ \operatorname{proj}_W(\vec{y})\ $ is the shortest distance between W and \vec{y} .
•	0	If $\vec{y} \in \mathbb{R}^n$ is a nonzero vector and W is a subspace of \mathbb{R}^n , then $\vec{y} - \text{proj}_W(\vec{y})$ is in W^{\perp} .
\bigcirc		If W is a subspace of \mathbb{R}^n and $\vec{y} \in \mathbb{R}^n$ such that $\vec{y} \cdot \vec{w} = 0$ for some vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$.
\bigcirc		The line of best fit $y = \beta_0 + \beta_1 x$ for the points $(1, 2), (1, 3)$, and $(1, 4)$ is unique.

(b) (4 points) Indicate whether the following situations are possible or impossible.

possible	impossibl	e
\bigcirc		A 5×5 real matrix A such that A has no real eigenvalues.
\bigcirc		An $m \times n$ matrix U where $U^T U = I_n$ and $n > m$.
•	0	A 2-dimensional subspace W of \mathbb{R}^3 and a vector $\vec{y} \in W$ such that $\ \vec{v}_1 - \vec{y}\ = \ \vec{v}_2 - \vec{y}\ $ where $\vec{v}_1, \vec{v}_2 \in W^{\perp}$ and $\vec{v}_1 \neq \vec{v}_2$.
\bigcirc		A matrix $A \in \mathbb{R}^{3 \times 4}$ such that the linear system $A\vec{x} = \vec{b}$ has a unique least-squares solution.

You do not need to justify your reasoning for questions on this page.

- (c) (2 points) An $m \times n$ matrix $A = \begin{bmatrix} \vec{a}_1 & \cdots & \vec{a}_n \end{bmatrix}$ has non-zero orthogonal columns and $A^T A = 2I_n$. Which of the following statements is FALSE?
 - $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$ for every \vec{x} and \vec{y} in \mathbb{R}^n .
 - $\bigcirc n \leq m.$
 - \bigcirc If we apply the Gram-Schmidt process to $\{\vec{a}_1, \ldots, \vec{a}_n\}$ we obtain the same set $\{\vec{a}_1, \ldots, \vec{a}_n\}$.
 - \bigcirc If A = QR is the QR factorization of A, then R is a diagonal matrix.

2. (3 points) Find a, b, c so that the set of vectors $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal set.

$$\vec{u}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 $\vec{u}_2 = \begin{pmatrix} -2\\0\\a \end{pmatrix}$ $\vec{u}_3 = \begin{pmatrix} -1\\b\\c \end{pmatrix}$

 $U_1 \cdot U_2 = 0$

=)-2+a=0 => a=2

a =	2	
b =	2	
c =	-1	

 $U_1 \cdot U_3 = 0$ = 0 = -1 + b + c = 0 = 2 = 0 C = -1 $U_2 \cdot U_3 = 0$ = 2 + 2c = 0 b = 2

You do not need to justify your reasoning for questions on this page.

- 3. (8 points) Fill in the blanks.
 - (a) Suppose \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^n and that \vec{v} is a unit vector. If $(2\vec{u} + \vec{v}) \cdot (\vec{u} + 5\vec{v}) = 13$, determine the length of \vec{u} . $\|\vec{u}\| =$

$(2u + v) \cdot (u + 5v) = 2u \cdot u + 10u \cdot v + u \cdot v + 5v \cdot v$ $\Rightarrow 2 \|u\|^{2} + 5 = 13 \qquad \|u\|^{2} = \frac{13 - 5}{2} = 4$

(b) The normal equations for the least-squares solution to $A\vec{x} = \vec{b}$ are given by:

ATA:= ATb

 $\|\vec{y}\| = \sqrt{14}$

7

(c) Compute the length (magnitude) of the vector \vec{y} .

$$\vec{y} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

 $\||\mathcal{U} \times \| = \| \times \| \quad \text{if } \mathcal{U} \text{ har orthonormal cols.}$ So $\||\mathcal{Y}\| = \| \begin{bmatrix} \frac{1}{3} \end{bmatrix} \| = \overline{J_{1^2+2^{3+3^2}}} = \overline{J_{1^4}}$

= J 14

(d) Let $A = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix}$. The vector $\vec{v} = \begin{pmatrix} -1 - i \\ -1 + i \end{pmatrix}$ is an eigenvector of A. Find the associated eigenvalue λ for the eigenvector \vec{v} of A. $\lambda = \boxed{2+2\cdot c}$

$$\begin{bmatrix} z & -z \\ -z & z \end{bmatrix} \begin{bmatrix} -1 & -\hat{i} \\ -1 & +\hat{i} \end{bmatrix} = \begin{bmatrix} 2(-1-\hat{i}) & -2(-1+\hat{i}) \\ 2(-1-\hat{i}) & +2(-1+\hat{i}) \end{bmatrix} = \begin{bmatrix} -4\hat{i} \\ -4 \end{bmatrix}$$

$$\begin{pmatrix} -4i \\ -4 \end{pmatrix} = \lambda \begin{pmatrix} -i-i \\ -i \neq i \end{pmatrix} \implies \lambda * (-i-i) = -4i$$

$$\Rightarrow \lambda = -\frac{4i}{-1-i} = \frac{4i}{1+i} * \frac{i-i}{-i} = \frac{4i-4i}{1-(-i)}$$

$$= \frac{4+4i}{2} = 2+2i \qquad = \frac{4+4i}{2} = 2+2i$$

dterm 3. Your initials: _____ You do not need to justify your reasoning for questions on this page.

4. (4 points) Fill in the blanks.

(a) Let $W = \operatorname{span}\left\{\begin{pmatrix}1\\1\\1\end{pmatrix}\right\}$ and let $\vec{y} = \begin{pmatrix}4\\5\\6\end{pmatrix}$. Calculate the projection of \vec{y} onto the subspace W, and find the distance from \vec{y} to W.

$$y = y \cdot [1] = \frac{15}{3} [1] = \frac{5}{5}$$

 $\operatorname{proj}_{W}(\vec{y}) = \left(\begin{array}{c} \mathbf{S} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{S} \end{array} \right)$ $\operatorname{dist}(\vec{y}, W) = \boxed{52}$

$$y - \hat{y} = \begin{pmatrix} 4\\ \xi \end{pmatrix} - \begin{pmatrix} 5\\ r \end{pmatrix} = \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}$$

JXi JXa (b) Let $W = \operatorname{span}\left\{\begin{pmatrix} \bullet \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \bullet \\ 1 \\ 0 \end{pmatrix}\right\}$, $L = \operatorname{span}\left\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\right\}$. Find all vectors $\mu \in L$ such that the distance from μ to W is equal to 2.

$$V_{1} = X_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$V_{2} = X_{1} - \frac{X_{1} \cdot X_{1}}{X_{1} \cdot X_{1}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$U_{2} = X_{1} - \frac{X_{1} \cdot X_{1}}{X_{1} \cdot X_{1}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$U_{2} = \begin{bmatrix} 2 \\ -2 \\ -2 \\ -2 \end{bmatrix}$$

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$Let c \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathcal{U} \text{ then}$$

$$\operatorname{Proj}_{W}(\mathcal{U}) = \frac{\mathcal{U} \cdot \mathcal{V}_{1}}{\mathcal{V}_{1} \cdot \mathcal{V}_{1}} + \frac{\mathcal{U} \cdot \mathcal{U}_{2}}{\mathcal{V}_{2} \cdot \mathcal{V}_{2}}$$

$$= \frac{1}{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \frac{1}{1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(1-1)(1+1)

Midterm 3. Your initials:

5. (6 points) Show all work for problems on this page.

One of the eigenvalues of the matrix A is $\lambda = 1$. Diagonalize the matrix.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 3 & 6^{+} \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad X = S \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} f + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad A - I = \begin{bmatrix} 0 & 1 & 1 \\ -1 & -2 & -1 \\ 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

6. (3 points) Find a matrix $A \in \mathbb{R}^{2\times 2}$ such that \vec{v}_1 is an eigenvector of A with eigenvalue $\lambda_1 = 4$, and \vec{v}_2 is an eigenvector of A with eigenvalue $\lambda_2 = -3$.

$$\vec{v}_{1} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad \vec{v}_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{pmatrix} 3 \\ 2 \\ 2 \\ 1 \end{pmatrix} \quad D = \begin{pmatrix} 4 & 0 \\ 0 & -3 \end{pmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 18 & -21 \\ 14 & -17 \end{pmatrix}$$

$$A = \left[\begin{array}{cc} |8 & -2| \\ |4 & -|7 \end{array} \right]$$

7. (4 points) Show all work for problems on this page.

Let $\mathcal{B} = {\vec{x_1}, \vec{x_2}, \vec{x_3}}$ be a basis for a subspace *W* of \mathbb{R}^4 , where

$$\vec{x}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \quad \vec{x}_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix}, \quad \vec{x}_3 = \begin{pmatrix} 0 \\ 2 \\ -1 \\ -1 \end{pmatrix}.$$

(a) Apply the Gram-Schmidt process to the set of vectors $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ to find an orthogonal basis $\mathcal{H} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ for *W*. Clearly show all steps of the Gram-Schmidt process.

$$V_{i} = \chi_{i} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$V_{z} = \chi_{z} - \frac{\chi_{i} \cdot V_{i}}{V_{i} \cdot V_{i}} = \int_{-\frac{1}{2}}^{-\frac{2}{2}} - \frac{-4}{4} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} = \sqrt{2}$$

$$V_{z} = \chi_{z} - \frac{\chi_{z} \cdot V_{i}}{V_{i} \cdot V_{i}} = \int_{-\frac{1}{2}}^{-\frac{2}{2}} - \frac{-4}{4} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = \sqrt{2}$$

$$V_{z} = \chi_{z} - \frac{\chi_{z} \cdot V_{i}}{V_{i} \cdot V_{i}} = \int_{-\frac{1}{2}}^{-\frac{1}{2}} - \frac{-2}{4} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} - \frac{-3}{6} \int_{-\frac{1}{2}}^{-1} \\ = \int_{-\frac{1}{2}}^{0} + \frac{1}{2} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} = \sqrt{2}$$
(b) In the space below, check that the vectors in the basis \mathcal{H} form an orthogonal set.

$$V_{1} \cdot V_{z} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \\ -1 \\ -1 \end{bmatrix} = -1 + 0 + 2 - 1 = 0$$

$$V_{1} \cdot V_{3} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 3 \\ -2 \\ -2 \end{bmatrix} = 0 - 3 + 1 + 2 = 0$$

$$V_{2} \cdot V_{3} = \begin{bmatrix} -1 \\ 0 \\ -2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 3 \\ -2 \\ -2 \end{bmatrix} = 0 + 0 + 2 - 2 = 0$$

- 8. (4 points) Show all work for problems on this page.
 - If *A* has the following QR factorization

$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 0 & 3 \end{pmatrix}, \text{ and } \vec{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix},$$

compute the least-square solution to the equation $A\vec{x} = \vec{b}$.

9. (4 points) Compute the least squares line $y = c_1 + c_2 x$ that best fits the data

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 11 \\ 1 \end{pmatrix}$$

$$A^{T}A = A^{T}B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix}$$