PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:

Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler
Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false

A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.
An invertible matrix A is diagonalizable if and only if its inverse A^{-1} is diagonalizable.

If $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$, then \vec{u} is orthogonal to $(\vec{w}-\vec{v})$.

If the vectors \vec{u} and \vec{v} are orthogonal then $\|\vec{u}+\vec{v}\|=\|\vec{u}\|+\|\vec{v}\|$.

If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\left\|\operatorname{proj}_{W}(\vec{y})\right\|$ is the shortest distance between W and \vec{y}.

If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\vec{y}-\operatorname{proj}_{W}(\vec{y})$ is in W^{\perp}.

If W is a subspace of \mathbb{R}^{n} and $\vec{y} \in \mathbb{R}^{n}$ such that $\vec{y} \cdot \vec{w}=0$ for some vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$.
\bigcirc The line of best fit $y=\beta_{0}+\beta_{1} x$ for the points $(1,2),(1,3)$, and $(1,4)$ is unique.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible
A 5×5 real matrix A such that A has no real eigenvalues.
An $m \times n$ matrix U where $U^{T} U=I_{n}$ and $n>m$.

A 2-dimensional subspace W of \mathbb{R}^{3} and a vector $\vec{y} \in W$ such
that $\left\\|\vec{v}_{1}-\vec{y}\right\\|=\left\\|\vec{v}_{2}-\vec{y}\right\\|$ where $\vec{v}_{1}, \vec{v}_{2} \in W^{\perp}$ and $\vec{v}_{1} \neq \vec{v}_{2}$.
A matrix $A \in \mathbb{R}^{3 \times 4}$ such that the linear system $A \vec{x}=\vec{b}$ has a
unique least-squares solution.

Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(c) (2 points) An $m \times n$ matrix $A=\left[\begin{array}{lll}\vec{a}_{1} & \cdots & \vec{a}_{n}\end{array}\right]$ has nonzero orthogonal columns and $A^{T} A=2 I_{n}$. Which of the following statements is FALSE?
$(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ for every \vec{x} and \vec{y} in \mathbb{R}^{n}.
$n \leq m$.
O If we apply the Gram-Schmidt process to $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ we obtain the same set $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$.
If $A=Q R$ is the QR factorization of A, then R is a diagonal matrix.
2. (3 points) Find a, b, c so that the set of vectors $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is an orthogonal set.

$$
\vec{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \vec{u}_{2}=\left(\begin{array}{c}
-2 \\
0 \\
a
\end{array}\right) \quad \vec{u}_{3}=\left(\begin{array}{c}
-1 \\
b \\
c
\end{array}\right)
$$

$$
\begin{aligned}
& U_{1} \cdot U_{2}=0 \\
& \Rightarrow-2+a=0 \quad \Rightarrow a=2
\end{aligned}
$$

$$
\begin{aligned}
a & =2 \\
b & =2 \\
c & =-1
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
u_{1} \cdot u_{3}=0 \\
u_{2} \cdot u_{3}=0
\end{array}\right\} \Rightarrow \begin{array}{c}
-1+b+c=0 \\
2+2 c=0
\end{array}\right\} \Rightarrow \begin{aligned}
& c=-1 \\
& b=2
\end{aligned}
$$

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (8 points) Fill in the blanks.
(a) Suppose \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^{n} and that \vec{v} is a unit vector. If $(2 \vec{u}+\vec{v}) \cdot(\vec{u}+5 \vec{v})=13$, determine the length of \vec{u}.

$$
\|\vec{u}\|=2
$$

$$
\begin{aligned}
(2 u+v) \cdot(u+5 v) & =2 u \cdot u+10 u \cdot v+u \cdot v+5 v \cdot v \\
\Rightarrow & 2\|u\|^{2}+5=13 \quad\|u\|^{2}=\frac{13-5}{2}=4
\end{aligned}
$$

(b) The normal equations for the least-squares solution to $A \vec{x}=\vec{b}$ are given by:
$A^{\top} A \hat{x}=A^{\top} b$
(c) Compute the length (magnitude) of the vector \vec{y}.

$$
\vec{y}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

$$
\|U x\|=\|x\| \text { if } U \text { has orthoromed coals. }
$$

$$
\|\vec{y}\|=\sqrt{14}
$$

$$
\text { so }\|y\|=\left\|\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}
$$

(d) Let $A=\left[\begin{array}{cc}2 & -2 \\ 2 & 2\end{array}\right]$. The vector $\vec{v}=\binom{-1-i}{-1+i}$ is an eigenvector of A. Find the associated eigenvalue λ for the eigenvector \vec{v} of A.

$$
\lambda=2+2 i
$$

$$
\left[\begin{array}{cc}
2 & -2 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
-1-i \\
-1+i
\end{array}\right]=\left[\begin{array}{l}
2(-1-i)-2(-1+i) \\
2(-1-i)+2(-1+i)
\end{array}\right]=\left[\begin{array}{l}
-4 i \\
-4
\end{array}\right]
$$

creole

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
-4 i \\
-4
\end{array}\right]=\lambda\left[\begin{array}{c}
-1-i \\
-1+i
\end{array}\right]} & \Rightarrow \lambda *(-1-i)=-4 i \\
=\frac{-4}{-1+i} \cdot \frac{-1-i}{-1-i} & \Rightarrow \lambda=\frac{-4 i}{-1-i}
\end{array}=\frac{4 i}{1+i} * \frac{1-i}{1-i}=\frac{4 i-4 i}{1-(-1)^{2}}\right)
$$

$$
\lambda=\frac{-4}{(-1+i)}=\frac{-4}{-1+i} \cdot \frac{-1-i}{-1-i}
$$

Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
4. (4 points) Fill in the blanks.
(a) Let $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ and let $\vec{y}=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$. Calculate the projection of \vec{y} onto the subspace 4) W, and find the distance from \vec{y} to W.

$$
\operatorname{proj}_{W}(\vec{y})=\left[\begin{array}{c}
5 \\
5 \\
5
\end{array}\right]
$$

$$
\operatorname{dist}(\vec{y}, W)=\sqrt{2}
$$

$$
y-\hat{y}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]-\left[\begin{array}{l}
5 \\
5 \\
5
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

(b) Let $W=\operatorname{span}\left\{\left(\begin{array}{c}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}, L=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$. Find all vectors $\mathbb{U} \in L$ such that the distance from \mathbb{K} to W is equal to 2 .

$$
\begin{aligned}
& V_{1}=X_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& V_{2}=x_{2}-\frac{x_{2}-x_{1}}{x_{1} \cdot x_{1}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{1}{1}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
2 \\
2 \\
2
\end{array} \left\lvert\,, \begin{array}{c}
-2 \\
-2 \\
-2
\end{array}\right.\right]} \\
& W=\operatorname{span}\left\{\left\{\left.\begin{array}{l}
0 \\
0 \\
0
\end{array} \right\rvert\, \begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} \\
& =\frac{c}{1}\left[\begin{array}{l}
0 \\
0
\end{array} \left\lvert\,+\frac{c}{T}\left[\begin{array} { l }
{ 1 } \\
{ 0 }
\end{array} \left|=\left|\begin{array}{l}
c \\
0 \\
0
\end{array}\right|\right.\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& y=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
\end{aligned}
$$

$$
(\lambda-1)(\lambda+1)
$$

Midterm 3. Your initials:
5. (6 points) Show all work for problems on this page.

One of the eigenvalues of the matrix A is $\lambda=1$. Diagonalize the matrix.
6. (3 points) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that \vec{v}_{1} is an eigenvector of A with eigenvalue $\lambda_{1}=4$, and \vec{v}_{2} is an eigenvector of A with eigenvalue $\lambda_{2}=-3$.

$$
\vec{v}_{1}=\binom{3}{2}, \quad \vec{v}_{2}=\binom{1}{1}
$$

$A=P D P^{-1}$ where $P=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right] \quad D=\left[\begin{array}{cc}4 & 0 \\ 0 & -3\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]^{-1} } \\
= & {\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -3
\end{array}\right] \frac{1}{3-2}\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & -4 \\
6 & -9
\end{array}\right]=\left[\begin{array}{cc}
18 & -21 \\
14 & -17
\end{array}\right] }
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
18 & -21 \\
14 & -17
\end{array}\right]
$$

$$
\begin{aligned}
& p(\lambda)=\operatorname{det}(A-\lambda I) \\
& A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right) \\
& =\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 1 & 1 \\
-1 & 1-\lambda & -1 \\
1 & 1 & 1-\lambda
\end{array}\right]=(1-\lambda)\left|\begin{array}{cc}
-1-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right|-(-1)\left|\begin{array}{cc}
1 & 1 \\
1 & 1-\lambda
\end{array}\right|+1\left|\begin{array}{cc}
1 & 1 \\
-1-\lambda & -1
\end{array}\right| \\
& =(1-\lambda)[(-1-\lambda)(1-\lambda)+1]+(1-\lambda-1)+(-1-(-1-\lambda)) \\
& P=\left\lvert\, \begin{array}{l}
\text { (}-\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right) \\
\hline
\end{array}\right. \\
& \begin{array}{l}
=-(\lambda-1)\left[\lambda^{2}-1+1\right]+(-\lambda)+\lambda \quad \underset{2}{a_{l} \min _{2}+} \quad D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array} \\
& d=0
\end{aligned}
$$

Midterm 3. Your initials: \qquad
7. (4 points) Show all work for problems on this page.

Let $\mathcal{B}=\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ be a basis for a subspace W of \mathbb{R}^{4}, where

$$
\vec{x}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
2
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right) .
$$

(a) Apply the Gram-Schmidt process to the set of vectors $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ to find an orthogonal basis $\mathcal{H}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ for W. Clearly show all steps of the Gram-Schmidt process.

$$
\begin{aligned}
& V_{1}=x_{1}=\left(\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right) \\
& \left.V_{2}=X_{2}-\frac{X_{1} \cdot V_{1}}{V_{1} \cdot V_{1}} V_{1}=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]-\frac{-4}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right]=V_{2}=\left\{\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
3 \\
1 \\
-2
\end{array}\right]\right\} \\
& v_{3}=X_{3}-\frac{X_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
-1
\end{array}\right]-\frac{-2}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]-\frac{-3}{6}\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
3 / 2 \\
1 / 2 \\
-1
\end{array}\right] \sim\left[\begin{array}{c}
0 \\
3 \\
1 \\
-2
\end{array}\right]=V_{3}
\end{aligned}
$$

(b) In the space below, check that the vectors in the basis \mathcal{H} form an orthogonal set.

$$
\begin{aligned}
& V_{1} \cdot V_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right]=-1+0+2-1=0 \\
& V_{1} \cdot V_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right]=0-3+1+2=0 \\
& V_{2} 0 V_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right]=0+0+2-2=0
\end{aligned}
$$

Midterm 3. Your initials: \qquad
8. (4 points) Show all work for problems on this page. If A has the following QR factorization

$$
A=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
7 & 2 \\
0 & 3
\end{array}\right) \text {, and } \vec{b}=\left(\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right)
$$

compute the least-square solution to the equation $A \vec{x}=\vec{b}$.

$$
\begin{aligned}
& A=Q R
\end{aligned}
$$

$$
\begin{aligned}
& A^{\top} A x=A^{\top} b
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left(\begin{array}{cc|c}
1 & 0 & -2 / 7 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

9. (4 points) Compute the least squares line $y=c_{1}+c_{2} x$ that best fits the data

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
c_{1} & c^{c_{2}} \\
1 & -1 \\
1 & 0
\end{array}\right] \quad b=\left(\begin{array}{l}
4 \\
2 \\
5
\end{array}\right) \\
& A^{\top} A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array} 1\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{11}{3}+\frac{1}{2} x
\end{aligned}
$$

