1.8 : An Introduction to Linear Transforms

Section 1.8 : An Introduction to Linear Transforms

Chapter 1 : Linear Equations
Math 1554 Linear Algebra

Topics

We will cover these topics in this section.

1. The definition of a linear transformation.
2. The interpretation of matrix multiplication as a linear transformation.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Construct and interpret linear transformations in \mathbb{R}^{n} (for example, interpret a linear transform as a projection, or as a shear).
2. Characterize linear transforms using the concepts of

- existence and uniqueness
- domain, co-domain and range

"transformation" just means function.

Exam 1 ore ween from today
@ 6:30 pm
Candeda 152

Linear Tanstamaioios

(1) $\pi^{R^{2}}$ is the coma

(b) ${ }^{\text {coin }}$

> Need to find σ such thu
> $A_{s}=\left[\begin{array}{l}7 \\ 7 \\ 7\end{array}\right] \quad$ anime $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ works?

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
i & 1
\end{array}\right)\binom{2}{5}=2(0)+5(\vdots) \\
& =\left(\frac{7}{\frac{7}{3}}\right) \quad \text { ANS: NO } \\
& \sim\left(\begin{array}{cc}
1 & 0 \\
0 & 2 \\
0 & 5 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$x=\int_{5}^{2} \begin{array}{ll}2 & \text { in vies } \\ \text { som }\end{array}$

input vector x ?

$$
T(x)=\binom{1}{\frac{1}{3}} ?
$$

siren woorsjent $\rightarrow\left[\begin{array}{ll|l}1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 3\end{array}\right] \sim\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & (2)\end{array}\right)$

1) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Qi: fund some
What does T_{A} do to vectors in \mathbb{R}^{3} ?

$$
\text { a) } A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$ input/output paws \& graph dem

2) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
$\left.{ }^{3}\right) A=\left[\begin{array}{ll}{\left[\begin{array}{ll}0 & 0 \\ 0\end{array}\right]}\end{array}\right]$ tor $k \in \mathbb{R} \quad Q_{2}$: give the trannfimeatro $) A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ a name.
(1)

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
T\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

$$
=2\left[\begin{array}{l}
0 \\
1
\end{array}\right]+3\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
T([-2) \\
-2
\end{array}\right)=\left(\left.\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right\rvert\,\binom{-2}{2} .\right.
$$

The mirror.
Bob Jimitom, Sal.
the Flip.
"reflection"

Suppose T is the linear transformation $T(\vec{x})=A \vec{x}$. Give a short geometric interpretation of what $T(\vec{x})$ does to vectors in \mathbb{R}^{2}.

1) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

What does T_{A} do to vectors in \mathbb{R}^{3} ?
a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(2) $=\left[\begin{array}{ll}{[0} \\ 0\end{array}\right]$
(3) $4=\left[\begin{array}{l}k \\ 0 \\ 0\end{array}\right]_{t a x \in \mathbb{R}}$
b) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(2) $\left.T\left(\left\lvert\, \begin{array}{l}2 \\ 3\end{array}\right.\right)\right)=\left[\left.\begin{array}{ll}1 & 0 \\ 0 & 0\end{array} \right\rvert\, \begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$
$T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right)=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\left.\begin{array}{l}1 \\ 0\end{array} \right\rvert\,\right.\right.$
$T\left(\binom{-2}{2}\right)=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\binom{-2}{2}=\binom{-2}{0}$

(3)
$(k>1)$

$$
T\binom{2}{3}=\left[\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\binom{2 k}{3 k}
$$

$$
T\left(\left[\begin{array}{c}
-2 \\
z
\end{array}\right]\right)=\left[\left.\begin{array}{c}
-2 h \\
2 k
\end{array} \right\rvert\,\right.
$$

at times a op as k times longer

lengtrener get longer. "dilation"

Example 2
Suppose T is the linear transformation $T(\vec{x})=A \vec{x}$. Give a short geometric interpretation of what $T(\vec{x})$ does to vectors in \mathbb{R}^{2}.

1) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
2) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
3) $A=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$ for $k \in \mathbb{R}$

Example 3
What does T_{A} do to vectors in \mathbb{R}^{3} ?
a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
b) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(a)

$$
T\left(\left(\frac{1}{3}\right)\right)=\left(\begin{array}{l}
1 \\
1
\end{array} 0.0(1)\right.
$$

(b)

$$
T\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right)=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Secrets across plane }
\end{aligned}
$$

A linear transformation $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ satisfies
$Q_{1}:$ What shat is matrix that tepensens $T \rightarrow$ of A ?
From the problem
Q_{2} what is A?

$$
\begin{aligned}
& T(x)=A x \\
& A=\left[\begin{array}{ll}
x & * \\
* & * \\
x & *
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right)=\left[\begin{array}{c}
5 \\
-7 \\
z
\end{array}\right] \text { o }\left(\begin{array}{ll}
a b \\
c & b \\
e & f
\end{array}\right)\left[\begin{array}{l}
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-3 \\
0 \\
0
\end{array}\right)
$$

A is 3×2 w/
3 taws $i_{2} 2$ columns
So $\left[\begin{array}{c}5 \\ -7 \\ 2\end{array}\right]$ is the First column of A.
Also $\left(\begin{array}{ll}a & b \\ c & d \\ e & f\end{array}\right)\binom{0}{1}=0\left[\begin{array}{l}a \\ c \\ e\end{array}\right]+1\left[\begin{array}{l}b \\ \frac{a}{f}\end{array}\right]=\left[\left.\begin{array}{l}b \\ b \\ f\end{array} \right\rvert\,\right.$
So $\left|\begin{array}{c}-3 \\ 8 \\ 0\end{array}\right|$ is the second colum

Now, Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is defined by $T(x)=A x$

$$
\begin{aligned}
& \rightarrow T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right) \\
& \rightarrow T\left(\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right)=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

Now find A.

Step 1:
Write $\binom{1}{0}$ as a loner comb of $\left[\begin{array}{ll}1 \\ 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ wire $\binom{0}{i}$ as a lover comb of $\binom{1}{1},\binom{-1}{1}$
Step 2: Apply T fo the linear combination to figure out $T((1)), T([i))$
Step: Solve for ci, c_{2}

$$
C_{1}=1 / 2
$$

$$
C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}(-1)=\left[\begin{array}{l}
1 \\
0
\end{array}\right) \quad C_{2}=-1 / 2
$$

$$
\left[\begin{array}{rr|r}
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right) \sim\left[\begin{array}{cc|c}
1 & -1 & 1 \\
0 & 2 & -1
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -1 & 1 \\
0 & 1 & -1(2)
\end{array}\right]
$$

So $\binom{1}{0}=\frac{1}{2}\binom{1}{1}+\left(-\frac{1}{2}\right)\binom{-1}{1}$

$$
\sim\left[\begin{array}{cc|c}
1 & 0 & 1 / 2 \\
0 & 1 & -1 / 2
\end{array}\right]
$$

$$
\begin{aligned}
& \text { So } T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right)\right)=A+\left[\begin{array}{l}
1 \\
0
\end{array}\right]=A\left(\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right)+\left(-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right)\right) \quad \text { firstumn } \operatorname{low}_{0} A\right. \\
& =\frac{1}{2} A(1)-\frac{1}{2} A\binom{-1}{1}=\frac{1}{2}\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array} \left\lvert\,=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)\right.\right.
\end{aligned}
$$

$$
\begin{array}{r}
y=x^{2} \quad \begin{array}{l}
f(x)=x^{2} \\
f: \mathbb{R} \rightarrow \mathbb{R}
\end{array}
\end{array}
$$

The fumetion \& gos
from \mathbb{R} to \mathbb{R}

$$
\begin{aligned}
& A \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array} \left\lvert\,\left(\begin{array} { l }
{ x _ { 1 } } \\
{ x _ { 2 } }
\end{array} \left|=\left|\begin{array}{l}
1 \\
2 \\
3
\end{array}\right|\right.\right.\right.\right.} \\
& \left(\begin{array}{ll|l}
1 & 1 & 1 \\
0 & 1 & 2 \\
1 & 1 & 3
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 1 & 1 \\
0 & (1) & 2 \\
0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

$$
[6 \times 6|6 x|
$$

1.8 EXERCISES

1. Let $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, and define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$.

Find the images under T of $\mathbf{u}=\left[\begin{array}{r}1 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$.
2. Let $A=\left[\begin{array}{rrr}.5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5\end{array}\right], \mathbf{u}=\left[\begin{array}{r}1 \\ 0 \\ -4\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.

Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.
In Exercises 3-6, with T defined by $T(\mathbf{x})=A \mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b}, and determine whether \mathbf{x} is unique.
3. $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-1 \\ 7 \\ -3\end{array}\right]$
4. $A=\left[\begin{array}{rrr}1 & -3 & 2 \\ 0 & 1 & -4 \\ 3 & -5 & -9\end{array}\right], \mathbf{b}=\left[\begin{array}{r}6 \\ -7 \\ -9\end{array}\right]$
5. $A=\left[\begin{array}{rrr}1 & -5 & -7 \\ -3 & 7 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$
6. $A=\left[\begin{array}{rrr}1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4\end{array}\right], \mathbf{b}=\left[\begin{array}{r}1 \\ 9 \\ 3 \\ -6\end{array}\right]$
7. Let A be a 6×5 matrix. What must a and b be in order to define $T: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b}$ by $T(\mathbf{x})=A \mathbf{x}$?
8. How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^{4} into \mathbb{R}^{5} by the rule $T(\mathbf{x})=A \mathbf{x}$?

For Exercises 9 and 10, find all \mathbf{x} in \mathbb{R}^{4} that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A \mathbf{x}$ for the given matrix A.
9. $A=\left[\begin{array}{rrrr}1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4\end{array}\right]$
10. $A=\left[\begin{array}{rrrr}1 & 3 & 9 & 2 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -2 & 3 & 0 & 5\end{array}\right]$
11. Let $\mathbf{b}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$, and let A be the matrix in Exercise 9. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$? Why or why not?
12. Let $\mathbf{b}=\left[\begin{array}{r}-1 \\ 3 \\ -1 \\ 4\end{array}\right]$, and let A be the matrix in Exercise 10. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$? Why or why not?
In Exercises 13-16, use a rectangular coordinate system to plot $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$, and their images under the given transformation T. (Make a separate and reasonably large sketch for each exercise.) Describe geometrically what T does to each vector \mathbf{x} in \mathbb{R}^{2}.
13. $T(\mathbf{x})=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
14. $T(\mathbf{x})=\left[\begin{array}{rr}.5 & 0 \\ 0 & .5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
15. $T(\mathbf{x})=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
16. $T(\mathbf{x})=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
17. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ into $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and maps $\mathbf{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ into $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$. Use the fact that T is linear to find the images under T of $3 \mathbf{u}, 2 \mathbf{v}$, and $3 \mathbf{u}+2 \mathbf{v}$.
18. The figure shows vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}, along with the images $T(\mathbf{u})$ and $T(\mathbf{v})$ under the action of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Copy this figure carefully, and draw the image $T(\mathbf{w})$ as accurately as possible. [Hint: First, write w as a linear combination of \mathbf{u} and \mathbf{v}.]

19. Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right] . \mathbf{y}_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, and $\mathbf{y}_{2}=\left[\begin{array}{r}-1 \\ 6\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{e}_{1} into \boldsymbol{y}_{1} and maps \mathbf{e}_{2} into \boldsymbol{y}_{2}. Find the images of $\left[\begin{array}{r}5 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
20. Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$, and $\mathbf{v}_{2}=\left[\begin{array}{r}7 \\ -3\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps x into $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}$. Find a matrix A such that $T(\mathbf{x})$ is $A \mathbf{x}$ for each \mathbf{x}.

In Exercises 21 and 22, mark each statement True or False. Justify anh anowar

Make two sketches similar to Figure 6 that illustrate properties (i) and (ii) of a linear transformation.
24. Suppose vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span \mathbb{R}^{n}, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Suppose $T\left(\mathbf{v}_{i}\right)=\mathbf{0}$ for $i=1 \ldots \ldots p$. Show that T is the zero transformation. That is, show that if \mathbf{x} is any vector in \mathbb{R}^{n}, then $T(\mathbf{x})=\mathbf{0}$.
25. Given $\mathbf{v} \neq 0$ and p in \mathbb{R}^{n}, the line through p in the direction of \mathbf{v} has the parametric equation $\mathbf{x}=\mathbf{p}+t \mathbf{v}$. Show that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ maps this line onto another line or onto a single point (a degenerate line).
26. Let \mathbf{u} and \mathbf{v} be linearly independent vectors in \mathbb{R}^{3}, and let P be the plane through \mathbf{u}, \mathbf{v}, and $\mathbf{0}$. The parametric equation of P is $\mathbf{x}=s \mathbf{u}+t \mathbf{v}$ (with s, t in R). Show that a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ maps P onto a plane through $\mathbf{0}$, or onto a line through $\mathbf{0}$, or onto just the origin in \mathbb{R}^{3}. What must be true about $T(\mathbf{u})$ and $T(\mathbf{v})$ in order for the image of the plane P to be a plane?
27. a. Show that the line through vectors \mathbf{p} and \mathbf{q} in $\mathbb{R}^{\text {n }}$ may be written in the parametric form $\mathbf{x}=(1-t) \mathbf{p}+t \mathbf{q}$. (Refer to the figure with Exercises 21 and 22 in Section 1.5.)
b. The line segment from \mathbf{p} to \mathbf{q} is the set of points of the form $(1-t) \mathbf{p}+t \mathbf{q}$ for $0 \leq t \leq 1$ (as shown in the figure below). Show that a linear transformation T maps this line segment onto a line segment or onto a single point.

$$
(t=1) \mathbf{q} \underbrace{(1-t) \mathbf{p}+t \mathbf{q}}_{(t=0) \mathbf{p}^{-}}
$$

In Exercises 21 and 22, mark each statement True or False. Justify each answer.
21. a. A linear transformation is a special type of function.
b. If A is a 3×5 matrix and T is a transformation defined by $T(\mathbf{x})=A \mathbf{x}$, then the domain of T is \mathbb{R}^{3}.
c. If A is an $m \times n$ matrix, then the range of the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is $\mathbb{R}^{\prime \prime \prime}$.
d. Every linear transformation is a matrix transformation.
e. A transformation T is linear if and only if $T\left(c_{1} \mathbf{v}_{1}+\right.$ $\left.c_{2} \mathbf{v}_{2}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)$ for all \mathbf{v}_{1} and \mathbf{v}_{2} in the domain of T and for all scalars c_{1} and c_{2}.
22. a. Every matrix transformation is a linear transformation.
b. The codomain of the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is the set of all linear combinations of the columns of A.
c. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and if \mathbf{c} is in $\mathbb{R}^{\text {m }}$, then a uniqueness question is "Is \mathbf{c} in the range of $T ?^{\prime \prime}$
d. A linear transformation preserves the operations of vector addition and scalar multiplication.
e. The superposition principle is a physical description of a linear transformation.
23. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that reflects each point through the x_{1}-axis. (See Practice Problem 2.)

28. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. It can be shown that the set P of all points in the parallelogram determined by \mathbf{u} and \mathbf{v} has the form $a \mathbf{u}+b \mathbf{v}$, for $0 \leq a \leq 1,0 \leq b \leq 1$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Explain why the image of a point in P under the transformation T lies in the parallelogram determined by $T(\mathbf{u})$ and $T(\mathbf{v})$.
29. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=m x+b$.
a. Show that f is a linear transformation when $b=0$.
b. Find a property of a linear transformation that is violated when $b \neq 0$.
c. Why is f called a linear function?
30. An affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $T(x)=A \mathbf{x}+\mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^{m}. Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in computer graphics.)
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a linearly dependent set in \mathbb{R}^{n}. Explain why the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.
In Exercises 32-36, column vectors are written as rows, such as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, and $T(\mathbf{x})$ is written as $T\left(x_{1}, x_{2}\right)$.
32. Show that the transformation T defined by $T\left(x_{1}, x_{2}\right)=$ $\left(4 x_{1}-2 x_{2}, 3\left|x_{2}\right|\right)$ is not linear.

	1.9 : Matrix of a Linear Transformation
Section 1.9 : Linear Transforms	Topics We will cover these topics in this section
Chapter 1: Leaw Feations	1. The standend vectoss and the standerd matrix
Mast issa Limar Algetos	2 Two and three dimetsional teradormations is mase detail.
	${ }^{3}$. Onte and ore-to ane trashlomatiens.
$\left[\begin{array}{c}\sin t \\ \sin \pi \\ \sin \theta\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{0}\end{array}\right]=$ P9	Otjectives For the topics covered is this section. stadents are expected to be atie to do the fottowing
	1. Identy and contoruct liness trasolormations of a matric.
them //itediomense	2 Chascterise linex trambormatioss as onto and/ar one-to-ase.
	${ }^{3}$. Solve linea spatems repesented as linear traufoms.
	4 Expess linex trandoms in ceber forms. woch as as matric equations or as vector equations.

CHECK OUT the textbook for Math 1553 which was created by Georgia Tech professors for Intro. Linear Algebra
https://textbooks math.gatech.edu/ila/
There's a really nice section on linear transformations

Transformations

At thas point it is convenient to fix our ideas and terminology regarding functions, which we will call tratuformations in this book. This allows us to systematire our discussion of matrices as functions.

Definition. A transformation from \mathbb{R}^{\prime} to \mathbb{R}^{-}is a rule T that assigss to each vector x in \mathbf{R}^{\prime} a vector $T(X)$ in \mathbf{R}^{-}

- \mathbf{R}^{*} is called the domain of T
- R^{-}is called the codomain of T
- For x in \mathbb{R}^{*}, the vector $T(x)$ in \mathbb{R}^{-}is the imgge of x under T.
- The set of all images $\left[T(x) \mid x\right.$ in $\left.\mathbb{R}^{2}\right)$ is the range of T.

The notation $T: \mathbf{R}^{\prime} \longrightarrow \mathbf{R}^{*}$ means ${ }^{*} T$ is a transformation from \mathbf{R}^{n} to \mathbf{R}^{-2}.
It may help to think of T as a "machine" that takes x as an input, and gives you $T(x)$ as the ousput.

Example (A matrix transformation that is neither one-to-one nor onto), a

${ }^{2 x}$
A picture of the matrix transformation T. The vioke plane is the solution ant $T(x)=0$. If you dras x along the violet plane, the outpot $T(x)=A x$ does at change. This demonstrates chat $T(x)=0$ hes more cthan one soluriwn is not ane-to-ose. The rangy of T is the violet line on the rigts, this is equarion $A x=b$ becomes isconsitent; tha means $T(x)=b$ has no solutione.
https://textbooks math.gatech.edu/ila/one-to-one-onto.html

Interactive Linear Aggebra

Interactive Linear Algebra

$$
\begin{aligned}
& \text { Des Nurgatit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Serephatsoal }
\end{aligned}
$$

Cempat lnoitrate of Techomive
sume 1 , 2019

Topics
We will cover these topics in this section

Chapter 1: Lees Locations Mash ISS4 Linear Agates

$$
\left[\begin{array}{l}
\sin t \\
\sin t \\
\sin \theta
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{0}
\end{array}\right]=\overline{\rho \rho}
$$

Etpo//ikedcem/164

We will cover these topics in this section
3 The standard vectors and she standard matrix
Two and there dimensional teandormations is more detail
Ovate and one-to one translomations.
Objectives
For the topics covered is this section. stualents are expected to be able to
ob the ioficuing
Identify and construct linear transformations of a matrix.
Characterize linear transformations as otto and/or one-to-oee.
3 Solve linear systems represented as linear transforms.
Express linear transforms in other forms, mach as as matrix equations
or as vector equations.

A Property of the Standard Vectors

$$
\begin{aligned}
& \text { The standard sectors in } \mathrm{R}^{n} \text { are the vectors } \dot{\varepsilon}_{1}, \dot{\epsilon}_{2} \ldots . . \dot{\epsilon}_{\mathrm{n}} \text {, where: } \\
& \text { For example, in } R^{3} \text {. } \\
& a_{1}=\left|\begin{array}{l}
1 \\
0 \\
0
\end{array}\right| \quad \bar{a}=\left|\begin{array}{l}
0 \\
1 \\
0
\end{array}\right| \quad s=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

$$
e_{j}^{*}=\left|\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right| \quad j_{S P^{2 t}}
$$

Notice.

Theorem
Example 1
Let $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be a linear transformation. Then there is a unique matrix A such that

What is the linear transform $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

In fact, A is a $m \times n$, and its $j^{\text {th }}$ column is the vector $T\left(\vec{c}_{j}\right)$.

$$
A=\left[\begin{array}{llll}
T\left(\vec{\epsilon}_{1}\right) & T\left(\vec{l}_{2}\right) & \cdots\left(\vec{e}_{n}\right)
\end{array}\right]
$$

The matrix A is the standard matrix for a linear transformation.
Ex.
Suppose T projects vectors in \mathbb{R}^{2}
to the x_{2}-avos. Find A. -.such that $\left.T_{(}\right)=A_{x}$.

First columinol A is $T\left(\vec{e}_{i}\right)=\binom{0}{0}$

$$
T\left(\vec{e}_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Definition an image

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for all $\vec{b} \in \mathbb{R}^{m}$ there is a $\vec{x} \in \mathbb{R}^{n}$ so that $T(\vec{x})=\vec{b}$. for all $\vec{b} \in \mathbb{R}^{m}$ there is at most one (possibly no) $\vec{x} \in \mathbb{R}^{n}$ so that $T(\vec{x})=\vec{b}$.

Onto is an existence property: for any $\vec{b} \in \mathbb{R}^{m}, A \vec{x}=\vec{b}$ has a solution.
Examples

- A rotation on the plane is an onto linear transformation.
- A projection in the plane is not onto.

Useful Fact
A
T is onto if and only if its standard matrix has a pivot in every row.
$\Leftrightarrow A$ has a pivot in eure Row \Longleftrightarrow RREF of A has no zero rows.

Q: Example of transformation which is (G) one-toom but not onto? (b) ont but not ove-to-ore?
T aten would $A_{x}=b$ have many son?

(b) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \quad T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is on d

Standard Matrices in \mathbb{R}^{2}

- There is a long list of geometric transformations of R^{2} in our textbook, as well as on the next few slides (reflections, rotations, contractions and expansions, shears, projections, ...)
- Please familiarize yourself with them: you are expected to memorize them (or be able to derive them)

The Standard Matrix

Two Dimensional Examples: Reflections

Two Dimensional Examples: Reflections

transformation	image of unit square	standard matrix	
reflection through $x_{1}-$ axis	x_{2}	$\rightarrow 0$	0

reflection through x_{2}-axis

$$
\begin{equation*}
T\left(\sqrt{\frac{x_{2}}{2}+x_{1}} x_{1}\right. \tag{array}
\end{equation*}
$$

nestle 19 sm n

Two Dimensional Examples: Contractions and Expansions

transformation	image of unit square	standard matrix
Horizontal Contraction	z_{2}	$\left(\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right) \cdot\|k\|<1$
		$\left(\begin{array}{cc}1 l_{2} \\ 0 & 1\end{array}\right)$

Horizontal Expansion

$$
\left(\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right), k>1
$$

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

Two Dimensional Examples: Contractions and Expansions

transformation	image of unit square	standard matrix
Vertical Contraction	x_{2}	
		$\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right),\|k\|<1$

Vertical Expansion
$\left.\begin{array}{ll}\text { Two Dimensional Examples: Shears } & \\ \hline \begin{array}{lll}\text { Horizontal Shear(left) } & & \\ \hline \text { image of unit square } & \text { standard matrix } \\ \hline\end{array} & \left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right), k<0\end{array}\right]$
transformation image of unit square standard matrix

Projection onto the x_{1}-axis

$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

Projection onto the x_{2}-axis

Horizontal Shear(right)

Two Dimensional Examples: Shears

transformation	image of unit square	standard matrix
Vertical Shear(down)	$\left(\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right), k>0$	

Vertical Shear(up)

$\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right), k>1$

SRA

Example

Complete the matrices below by entering numbers into the missing entries so that the properties are satisfied. If it isn't possible to do so, state why.
a) A is a 2×3 standard matrix for a one-to-one linear transform.

$$
A=\left(\begin{array}{lll}
1 & 0 & \\
0 & & 1
\end{array}\right)
$$

b) B is a 3×2 standard matrix for an onto linear transform.

$$
B=\left(\begin{array}{l}
1 \\
\end{array}\right)
$$

c) C is a 3×3 standard matrix of a linear transform that is one-to-one and onto.

$$
C=\left(\begin{array}{lll}
1 & 1 & 1 \\
& & \\
& &
\end{array}\right)
$$

For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these are equivalent statements.

1. T is onto.
2. The matrix A has columns which span \mathbb{R}^{m}.
3. The matrix A has m pivotal columns.
Y. .

Theorem
For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these are equivalent statements.

1. T is one-to-one.
. The unique solution to $T(\vec{x})=\overrightarrow{0}$ is the trivial one.
The matrix A linearly independent columns.
Each column of A is pivotal.

Example 2
Define a linear transformation by
$T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2} y 5 x_{1}+7 x_{2} x_{1}+3 x_{2}\right)$. Is this one-to-one? Is it
onto? onto?
Q_{1} : domain and cadoncoun? $\mathbb{R}^{2} \mathbb{R}^{3}$
Q2: what is A?

$$
T(1,0)=(3+0,5+0,1+0)=(3,5,1)
$$

$$
T(0,1)=(0+1,0+7,0+3)=(1,7,3)
$$

Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 8 & 1 \\
2 & -1 & 3 \\
0 & 0 & 5
\end{array}\right]
$$

Is the transformation onto? Is it one-to-one?

1.9 EXERCISES

In Exercises $1-10$, assume that T is a linear transformation. Find the standard matrix of T.

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1)$ and $T\left(\mathbf{e}_{2}\right)=(-5,2,0,0)$. where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.
2. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad T\left(\mathbf{e}_{1}\right)=(1,3), \quad T\left(\mathbf{e}_{2}\right)=(4,-7), \quad$ and $T\left(\mathbf{e}_{3}\right)=(-5,4)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are the columns of the 3×3 identity matrix.
3. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $3 \pi / 2$ radians (counterclockwise).
4. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $-\pi / 4$ radians (clockwise). [Hint: $T\left(\mathbf{e}_{1}\right)=(1 / \sqrt{2},-1 / \sqrt{2})$]
5. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a vertical shear transformation that maps \mathbf{e}_{1} into $\mathbf{e}_{1}-2 \mathbf{e}_{2}$ but leaves the vector \mathbf{e}_{2} unchanged.
6. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a horizontal shear transformation that leaves \mathbf{e}_{1} unchanged and maps \mathbf{e}_{2} into $\mathbf{e}_{2}+3 \mathbf{e}_{1}$.
7. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first rotates points through $-3 \pi / 4$ radian (clockwise) and then reflects points through the horizontal x_{1}-axis. $\left[\right.$ Hint: $T\left(\mathbf{e}_{1}\right)=(-1 / \sqrt{2}, 1 / \sqrt{2})$.]
8. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the horizontal x_{1} axis and then reflects points through the line $x_{2}=x_{1}$.
9. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first performs a horizontal shear that transforms \mathbf{e}_{2} into $\mathbf{e}_{2}-2 \mathbf{e}_{1}$ (leaving \mathbf{e}_{1} unchanged) and then reflects points through the line $x_{2}=-x_{1}$.
10. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the vertical x_{2}-axis and then rotates points $\pi / 2$ radians.
11. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the x_{1}-axis and then reflects points through the x_{2} axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
12. Show that the transformation in Exercise 8 is merely a rotation about the origin. What is the angle of the rotation?
13. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that $T\left(\mathbf{e}_{1}\right)$ and $T\left(\mathbf{e}_{2}\right)$ are the vectors shown in the figure. Using the figure, sketch the vector $T(2,1)$.

14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$, where \mathbf{a}_{1} and \mathbf{a}_{2} are shown in the figure. Using the figure, draw the image of $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ under the
transformation T.

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.
15. $\left[\begin{array}{lll}? & ? & ? \\ ? & ? & ? \\ ? & ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}3 x_{1}-2 x_{3} \\ 4 x_{1} \\ x_{1}-x_{2}+x_{3}\end{array}\right]$
16. $\left[\begin{array}{ll}? & ? \\ ? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}-x_{2} \\ -2 x_{1}+x_{2} \\ x_{1}\end{array}\right]$

In Exercises 17-20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_{1}, x_{2}, \ldots are not vectors but are entries in vectors.
17. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)$
18. $T\left(x_{1}, x_{2}\right)=\left(2 x_{2}-3 x_{1}, x_{1}-4 x_{2}, 0, x_{2}\right)$
19. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)$
20. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{1}+3 x_{3}-4 x_{4} \quad\left(T: \mathbb{R}^{4} \rightarrow \mathbb{R}\right)$
21. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 4 x_{1}+5 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=$ (3,8).
22. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2},-x_{1}+3 x_{2}, 3 x_{1}-2 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=(-1,4,9)$.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime \prime \prime}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
b. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors about the origin through an angle φ, then T is a linear transformation.
c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every vector \mathbf{x} in \mathbb{R}^{n} maps onto some vector in \mathbb{R}^{m}.
e. If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot be one-to-one.
24. a. Not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
b. The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images of the columns of the $n \times n$ identity matrix.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

c. The standard matrix of a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$, where a and d are ± 1.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps onto a unique vector in \mathbb{R}^{m}.
c. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ cannot map \mathbb{R}^{2} onto \mathbb{R}^{3}.
In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
25. The transformation in Exercise 17
26. The transformation in Exercise 2
27. The transformation in Exercise 19
28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T. Use the notation of Example 1 in Section 1.2.
29. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one.
30. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto.
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime \prime}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T is one-to-one if and only if A has _pivot columns." Explain why the statement is true. [Hint: Look in the exercises for Section 1.7.]
32. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T maps \mathbb{R}^{n} onto $\mathbb{R}^{\text {" }}$ if and only if A has pivot columns." Find some theorems that explain why the statement is true.
33. Verify the uniqueness of A in Theorem 10. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\mathbf{x})=B \mathbf{x}$ for some
$m \times n$ matrix B. Show that if A is the standard matrix for T, then $A=B$. [Hint: Show that A and B have the same columns.]
34. Why is the question "Is the linear transformation T onto?" an existence question?
35. If a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}. can you give a relation between m and n ? If T is one-to-one, what can you say about m and n ?
36. Let $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear transformations. Show that the mapping $\mathrm{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbf{R}^{p} to $\left.\mathbf{R}^{\prime \prime}\right)$. [Hint: Compute $T(S(c \mathbf{u}+d \mathbf{v})$) for \mathbf{u}, \mathbf{v} in \mathbb{R}^{\prime} and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]
[M] In Exercises 37-40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40 , decide if T maps \mathbb{R}^{5} onto R^{5}. Justify your answers.
37. $\left[\begin{array}{rrrr}-5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4\end{array}\right]$
38. $\left[\begin{array}{rrrr}7 & 5 & 4 & -9 \\ 10 & 6 & 16 & -4 \\ 12 & 8 & 12 & 7 \\ -8 & -6 & -2 & 5\end{array}\right]$
39. $\left[\begin{array}{rrrrr}4 & -7 & 3 & 7 & 5 \\ 6 & -8 & 5 & 12 & -8 \\ -7 & 10 & -8 & -9 & 14 \\ 3 & -5 & 4 & 2 & -6 \\ -5 & 6 & -6 & -7 & 3\end{array}\right]$
40. $\left[\begin{array}{rrrrr}9 & 13 & 5 & 6 & -1 \\ 14 & 15 & -7 & -6 & 4 \\ -8 & -9 & 12 & -5 & -9 \\ -5 & -6 & -8 & 9 & 8 \\ 13 & 14 & 15 & 2 & 11\end{array}\right]$

