Section 2.3 : Invertible Matrices

Chapter 2: Matrix Algebra
 Math 1554 Linear Algebra

"A synonym is a word you use when you can't spell the other one."

- Baltasar Gracián

The theorem we introduce in this section of the course gives us many ways of saying the same thing. Depending on the context, some will be more convenient than others.

Topics and Objectives

Topics

We will cover these topics in this section.

1. The invertible matrix theorem, which is a review/synthesis of many of the concepts we have introduced.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Characterize the invertibility of a matrix using the Invertible Matrix Theorem.
2. Construct and give examples of matrices that are/are not invertible.

Motivating Question

When is a square matrix invertible? Let me count the ways!

Topics and Objectives
Section 2.3 : Invertible Matrices

Chapter 2: Matrix Algebra
Math 1554 Linear Algebra
"A synonym is a word you use when you can't spell the other one."

- Baltasar Gracián

The theorem we introduce in this section of the course gives us many ways of saying the same thing. Depending on the context, some will be more convenient than others.

Topics
We will cover these topics in this section.

1. The invertible matrix theorem, which is a review/synthesis of many of the concepts we have introduced.

Objectives
For the topics covered in this section, students are expected to be able to do the following.

1. Characterize the invertibility of a matrix using the Invertible Matrix Theorem.
2. Construct and give examples of matrices that are/are not invertible.

Motivating Question
is women
invertible deft if

$$
A B=I=B A
$$

$$
\text { for save } B,<
$$

The diagram below gives us another perspective on the role of A^{-1}.

The matrix inverse A^{-1} transforms $A x$ back to \vec{x}. This is because:

$$
A^{-1}(A \vec{x})=\left(A^{-1} A\right) \vec{x}=\zeta
$$

The linear transformation $\vec{x} \mapsto A \vec{x}$ is onto.
j) There is a $n \times n$ matrix C so that $C A=I_{n}$. (A has a left inverse.)
k) There is a $n \times n$ matrix D so that $A D=I_{n}$. (A has a right inverse.)
l) A^{T} is invertible.

The Invertible Matrix Theorem Theorem
Let A be an $n \times n$ matrix. These statements are all equivalent.
a) A is invertible.
b) A is row equivalent to I_{n}

Course Schedule

17 12/11-12/15 Final Exams: MATH 1554 Common Final Exam Tuesday, December 12th at 6 pm

Ex. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$
does $A_{x=0}$ have only
thrived sots?

$$
(A \mid \overrightarrow{0}) \sim\left[\begin{array}{ccc|c}
1 & 2 & \frac{L}{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

free val.

$$
T(x)=?
$$

$$
=k\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

sarge of A is a kine in $\mathbb{2}^{3}$.

The Invertible Matrix Theorem: Final Notes

- Items j and k of the invertible matrix theorem (IMT) lead us directly to the following theorem.

Theorem
If A and B are $n \times n$ matrices and $A B=I$, then A and B are invertible, and $B=A^{-1}$ and $A=B^{-1}$.

- The IMT is a set of equivalent statements. They divide the set of all square matrices into two separate classes: invertible, and non-invertible.
Is we progress through this course, we will be able to add additional equivalent statements to the IMT (that deal with determinants, eigenvalues, etc).

Example 1
Is isis matiximereribe AKA non-singular?

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-5 & -1 & -2 \\
-5 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 4 \\
0 & -1 & -1
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 4 \\
0 & 0 & 3
\end{array}\right]
$$

- -3.13 puts.

So. A is invertible
How mary solus to $A_{c}=b \quad b=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$? (1)

Example 2
If possible, fill in the missing elements of the matrices below with numbers so that each of the matrices ar. singular. If it is not possible to
do so, state why. do so, state why.

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & N P & 1 \\
0 & \mathcal{P} & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{l|ll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Matrix Completion Problems

- The previous example is an example of a matrix completion problem (MAP).
- MCPs are great questions for recitations, midterms, exams.
- the Netflix Problem is another example of an MCP.

Given a ratings matrix in which each entry (i, j) represents the rating of movie j by customer i if customer i has watched
movie j, and is otherwise missing, predict the remaining matrix movie j, and is otherwise missing, predict the remaining matrix
entries in order to make recommendations to customers on what to watch next.
rating

Unless otherwise specified, assume that all matrices in these exercises are $n \times n$. Determine which of the matrices in Exercises $1-10$ are invertible. Use as few calculations as possible. Justify your answers.

1. $\left[\begin{array}{rr}5 & 7 \\ -3 & -6\end{array}\right]$
2. $\left[\begin{array}{rr}-4 & 6 \\ 6 & -9\end{array}\right]$
3. $\left[\begin{array}{rrr}5 & 0 & 0 \\ -3 & -7 & 0 \\ 8 & 5 & -1\end{array}\right]$
4. $\left[\begin{array}{rrr}-7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9\end{array}\right]$
5. $\left[\begin{array}{rrr}0 & 3 & -5 \\ 1 & 0 & 2 \\ -4 & -9 & 7\end{array}\right]$
6. $\left[\begin{array}{rrr}1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0\end{array}\right]$
7. $\left[\begin{array}{rrrr}-1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1\end{array}\right] \mathbf{8 .}\left[\begin{array}{rrrr}4 & 0 & -7 & -7 \\ -6 & 1 & 11 & 9 \\ 7 & -5 & 10 & 19 \\ -1 & 2 & 3 & -1\end{array}\right]$
8. $[\mathbf{M}]\left[\begin{array}{rrrrr}5 & 3 & 1 & 7 & 9 \\ 6 & 4 & 2 & 8 & -8 \\ 7 & 5 & 3 & 10 & 9 \\ 9 & 6 & 4 & -9 & -5 \\ 8 & 5 & 2 & 11 & 4\end{array}\right]$

In Exercises 11 and 12, the matrices are all $n \times n$. Each part of the exercises is an implication of the form "If "statement 1 ", then "statement 2 "." Mark an implication as True if the truth of "statement 2 " always follows whenever "statement 1 " happens to be true. An implication is False if there is an instance in which "statement 2 " is false but "statement 1 " is true. Justify each answer.
11. a. If the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
b. If the columns of A span \mathbb{R}^{n}, then the columns are linearly independent.
c. If A is an $n \times n$ matrix, then the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
d. If the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution, then A has fewer than n pivot positions.
e. If A^{T} is not invertible, then A is not invertible.
12. a. If there is an $n \times n$ matrix D such that $A D=I$, then there is also an $n \times n$ matrix C such that $C A=I$.
b. If the columns of A are linearly independent, then the molumne of A eman $\mathbb{B} n$
30. If A is an $n \times n$ matrix and the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one, what else can you say about this transformation? Justify your answer.
31. Suppose A is an $n \times n$ matrix with the property that the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}. Without using Theorems 5 or 8 , explain why each equation $A \mathbf{x}=\mathbf{b}$ has in fact exactly one solution.
32. Suppose A is an $n \times n$ matrix with the property that the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation $A \mathbf{x}=\mathbf{b}$ must have a solution for each \mathbf{b} in \mathbb{R}^{n}.
In Exercises 33 and $34, T$ is a linear transformation from \mathbb{R}^{2} into \mathbb{R}^{2}. Show that T is invertible and find a formula for T^{-1}.
33. $T\left(x_{1}, x_{2}\right)=\left(-5 x_{1}+9 x_{2}, 4 x_{1}-7 x_{2}\right)$
34. $T\left(x_{1}, x_{2}\right)=\left(6 x_{1}-8 x_{2},-5 x_{1}+7 x_{2}\right)$
35. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear transformation. Explain why T is both one-to-one and onto \mathbb{R}^{n}. Use equations (1) and (2). Then give a second explanation using one or more theorems.
36. Let T be a linear transformation that maps \mathbb{R}^{n} onto \mathbb{R}^{n}. Show that T^{-1} exists and maps \mathbb{R}^{n} onto \mathbb{R}^{n}. Is T^{-1} also one-toone?
37. Suppose T and U are linear transformations from \mathbb{R}^{n} to \mathbb{R}^{n} such that $T(U \mathbf{x})=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}. Is it true that $U(T \mathbf{x})=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n} ? Why or why not?
d. If the linear transformation (x) $\mapsto A \mathbf{x}$ maps \mathbb{R}^{n} into \mathbb{R}^{n}, then A has n pivot positions.
e. If there is a \mathbf{b} in \mathbb{R}^{n} such that the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is not one-to-one.
13. An $m \times n$ upper triangular matrix is one whose entries below the main diagonal are 0's (as in Exercise 8). When is a square upper triangular matrix invertible? Justify your answer.
14. An $m \times n$ lower triangular matrix is one whose entries above the main diagonal are 0's (as in Exercise 3). When is a square lower triangular matrix invertible? Justify your answer.
15. Can a square matrix with two identical columns be invertible? Why or why not?
16. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^{5} ? Why or why not?
17. If A is invertible, then the columns of A^{-1} are linearly independent. Explain why.
18. If C is 6×6 and the equation $C x=v$ is consistent for every \mathbf{v} in \mathbb{R}^{6}, is it possible that for some \mathbf{v}, the equation $C \mathbf{x}=\mathbf{v}$ has more than one solution? Why or why not?
19. If the columns of a 7×7 matrix D are linearly independent, what can you say about solutions of $D \mathbf{x}=\mathbf{b}$? Why?
20. If $n \times n$ matrices E and F have the property that $E F=I$, then E and F commute. Explain why.
21. If the equation $G \mathbf{x}=\mathbf{y}$ has more than one solution for some \mathbf{y} in \mathbb{R}^{n}, can the columns of G span \mathbb{R}^{n} ? Why or why not?
22. If the equation $H \mathbf{x}=\mathbf{c}$ is inconsistent for some \mathbf{c} in \mathbb{R}^{n}, what can you say about the equation $H \mathbf{x}=\mathbf{0}$? Why?
23. If an $n \times n$ matrix K cannot be row reduced to I_{n}, what can you say about the columns of K ? Why?
24. If L is $n \times n$ and the equation $L \mathbf{x}=0$ has the trivial solution, do the columns of L span \mathbb{R}^{n} ? Why?
25. Verify the boxed statement preceding Example 1.
26. Explain why the columns of A^{2} span \mathbb{R}^{n} whenever the columns of A are linearly independent.
27. Show that if $A B$ is invertible, so is A. You cannot use Theorem 6(b), because you cannot assume that A and B are invertible. [Hint: There is a matrix W such that $A B W=I$. Why?]
28. Show that if $A B$ is invertible, so is B.
29. If A is an $n \times n$ matrix and the equation $A \mathbf{x}=\mathbf{b}$ has more than

So,... 1553 does not

Section 2.4 : Partitioned Matrices

Chapter 2: Matrix Algebra
Math 1554 Linear Algebra

Topics and Objectives

Topics
We will cover these topics in this section.

1. Partitioned matrices (or block matrices)

Objectives
For the topics covered in this section, students are expected to be able to do the following.

1. Apply partitioned matrices to solve problems regarding matrix invertibility and matrix multiplication.

Topics and Objectives

Section 2.4 : Partitioned Matrices

Chapter 2 : Matrix Algebra
Math 1554 Linear Algebra

Topics
We will cover these topics in this section.

1. Partitioned matrices (or block matrices)

Objectives
For the topics covered in this section, students are expected to be able to do the following.

1. Apply partitioned matrices to solve problems regarding matrix invertibility and matrix multiplication.

5	$9 / 18-9 / 22$	2.3 .2 .4	WS2.2.2.3	2.5	WS2.4.2.5	2.8
6	$9 / 25-9 / 29$	2.9	WS2.8.2.9	3.1 .3 .2	WS3.1.3.2	3.3
7	$10 / 2-10 / 6$	4.9	W53.3.4.9	5.1 .5 .2	W55.1.5.2	5.2
8	$10 / 9-10 / 13$	Break	Break	Exam 2. Review	Cancelled	5.3

What is a Partitioned Matrix?
Example
This matrix

3	1	4	1	0
1	6	1	0	1
0	0	0	4	2

$$
\left.\left.\left[\begin{array}{lll}
{\left[\begin{array}{lll}
3 & 1 & 4 \\
1 & 6 & 1
\end{array}\right]} & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ll}
4 & 2
\end{array}\right]}
\end{array}\right]=\frac{\left\{\begin{array}{l}
A_{1,1}
\end{array}\right.}{A_{1,2}} \underset{A_{2,1}}{ } \right\rvert\, A_{2,2}\right]=
$$

We partitioned our matrix into four blocks, each of which has different dimensions.

$$
A=\left[\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & A_{2} & 0 \\
0 & 0 & \\
0 & A_{3} & \\
0 & 0 & 0
\end{array}\right)
$$

Another Example of a Partitioned Matrix
Example: The reduced echelon form of a matrix. We can use a partitioned matrix to

This is useful when studying the null space of A, as we will see later in this course.
block e

Recall that a row vector times a column vector (of the right dimensions) is a scalar. For example,

$$
\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=
$$

This is the row column matrix multiplication method from Section 2.1.
Theorem
Let A be $m \times n$ and B be $n \times p$ matrix. Then, the (i, j) entry of $A B$ is
$\operatorname{row}_{i} A \cdot \operatorname{col}_{j} B$.
This is the Row Column Method for matrix multiplication.

Partitioned matrices can be multiplied using this method, as if each block were a scalar (provided each block has appropriate dimensions).

Recall, using our formula for a 2×2 matrix, $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]^{-1}=\frac{1}{a c}\left[\begin{array}{cc}c & -b \\ 0 & a\end{array}\right]$.
Example: Suppose $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n}$, and $C \in \mathbb{R}^{n \times n}$ are invertible matrices. Construct the inverse of $\left[\begin{array}{ll}A & B \\ 0 & C\end{array}\right]$.
Lea. Suppose $\left(\begin{array}{ll}A & B \\ 0 & c\end{array}\right)^{-1}=\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=$

$$
\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]^{-1}=\left(\begin{array}{cc}
A^{-1} & -A^{-1} B C^{-1} \\
0 & C^{-1}
\end{array}\right)
$$

Then

$$
\left.\begin{array}{l}
\text { Then } \\
{\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0 \\
0 & I_{n}
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & I_{3} & 0 \\
0 & 10 & 00 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right]} \\
0
\end{array}\right]
$$

21. a. Verify that $A^{2}=I$ when $A=\left[\begin{array}{rr}1 & 0 \\ 3 & -1\end{array}\right]$.
b. Use partitioned matrices to show that $M^{2}=I$ when

$$
\begin{aligned}
& M=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
3 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -3 & 1
\end{array}\right] \\
& M^{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -3 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -3 & 1
\end{array}\right] \\
& M^{2}=\left[\begin{array}{ll}
A & 0 \\
I & -A
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
I & A
\end{array}\right]=\left(\begin{array}{ccc}
A^{2}+0 & 0+0 \\
A=A & 0+K^{K}
\end{array}\right)=\left[\begin{array}{cc}
I_{2} & 0 \\
0 & I_{2}
\end{array}\right]=\frac{I}{I_{4}} \\
& Q: \text { is M inverting? } \quad\left[\begin{array}{cc}
10 & 0 \\
00 \\
08 \\
0.0
\end{array}\right)=I_{4}
\end{aligned}
$$

The Column Row Method (if time permits)
A column vector times a row vector is a matrix. For example,

$$
\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\left[\begin{array}{ll}
1 & 3
\end{array}\right]=
$$

Theorem
Let A be $m \times n$ and B be $n \times p$ matrix. Then,

$$
\begin{aligned}
A B & =\left[\begin{array}{lll}
\operatorname{col}_{1} A & \cdots & \operatorname{col}_{n} A
\end{array}\right]\left[\begin{array}{c}
\operatorname{row}_{1} B \\
\vdots \\
\operatorname{row}_{n} B
\end{array}\right] \\
& =\underbrace{\operatorname{col}_{1} A \operatorname{row}_{1} B+\cdots \operatorname{col}_{n} A \operatorname{row}_{n} B}_{m \times p \text { matrices }}
\end{aligned}
$$

This is the Column Row Method for matrix multiplication.

The Strassen Algorithm: An impressive use of partitioned matrices

Naive Multiplication of two $n \times n$ matrices A and B requires n^{3} arithmetic steps. Strassen's algorithm partitions the matrices, makes a very clever sequence of multiplications, additions, to reduce the computation to $n^{2.803 \ldots}$ steps.

Students aren't expected to be familiar with this material. It's presented to section 24 siden taid motivate matrix partitioning.

The Fast Fourier Transform (FFT)
The FFT is an essential algorithm of modern technology that uses partitioned matrices recursively.

$$
G_{0}=[1], \quad G_{n+1}=\left[\begin{array}{cc}
G_{n} & -G_{n} \\
G_{n} & G_{n}
\end{array}\right]
$$

The recursive structure of the matrix means that it can be computed in
nearly linear time. This is an nearly linear time. This is an complexity of n^{3}. It means that we can compute $G_{n} x$, and G_{n}^{-1} very quickly.

Students aren't expected to be familiar with this material. It's presented to motivate matrix partitioning.

2.4 EXERCISES

In Exercises 1-9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1-4.

1. $\left[\begin{array}{ll}I & 0 \\ E & I\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$
2. $\left[\begin{array}{cc}E & 0 \\ 0 & F\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$
3. $\left[\begin{array}{ll}0 & I \\ I & 0\end{array}\right]\left[\begin{array}{cc}W & X \\ Y & Z\end{array}\right]$
4. $\left[\begin{array}{rr}I & 0 \\ -X & I\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$

In Exercises 5-8, find formulas for X, Y, and Z in terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint: Compute the product on the left, and set it equal to the right side.]
5. $\left[\begin{array}{ll}A & B \\ C & 0\end{array}\right]\left[\begin{array}{ll}I & 0 \\ X & Y\end{array}\right]=\left[\begin{array}{ll}0 & I \\ Z & 0\end{array}\right]$
6. $\left[\begin{array}{ll}X & 0 \\ Y & Z\end{array}\right]\left[\begin{array}{ll}A & 0 \\ B & C\end{array}\right]=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$
7. $\left[\begin{array}{lll}X & 0 & 0 \\ Y & 0 & I\end{array}\right]\left[\begin{array}{ll}A & Z \\ 0 & 0 \\ B & I\end{array}\right]=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$
8. $\left[\begin{array}{cc}A & B \\ 0 & I\end{array}\right]\left[\begin{array}{ccc}X & Y & Z \\ 0 & 0 & I\end{array}\right]=\left[\begin{array}{ccc}I & 0 & 0 \\ 0 & 0 & I\end{array}\right]$
9. Suppose A_{11} is an invertible matrix. Find matrices X and Y such that the product below has the form indicated. Also, compute B_{22}. [Hint: Compute the product on the left, and set it equal to the right side.]
$\left[\begin{array}{lll}I & 0 & 0 \\ X & I & 0 \\ Y & 0 & I\end{array}\right]\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32}\end{array}\right]=\left[\begin{array}{ll}B_{11} & B_{12} \\ 0 & B_{22} \\ 0 & B_{32}\end{array}\right]$
10. The inverse of $\left[\begin{array}{ccc}I & 0 & 0 \\ C & I & 0 \\ A & B & I\end{array}\right]$ is $\left[\begin{array}{ccc}I & 0 & 0 \\ Z & I & 0 \\ X & Y & I\end{array}\right]$.

Find X, Y, and Z.

In Exercises 11 and 12, mark each statement True or False. Justify each answer.
11. a. If $A=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right]$ and $B=\left[\begin{array}{ll}B_{1} & B_{2}\end{array}\right]$, with A_{1} and A_{2} the same sizes as B_{1} and B_{2}, respectively, then $A+B=$ $\left[\begin{array}{ll}A_{1}+B_{1} & A_{2}+B_{2}\end{array}\right]$.
b. If $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ and $B=\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]$, then the partitions of A and B are conformable for block multiplication.
12. a. The definition of the matrix-vector product $A x$ is a special case of block multiplication.
b. If A_{1}, A_{2}, B_{1}, and B_{2} are $n \times n$ matrices, $A=\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right]$, and $B=\left[\begin{array}{ll}B_{1} & B_{2}\end{array}\right]$, then the product $B A$ is defined, but $A B$ is not.
13. Let $A=\left[\begin{array}{ll}B & 0 \\ 0 & C\end{array}\right]$, where B and C are square. Show that A is invertible if and only if both B and C are invertible.
14. Show that the block upper triangular matrix A in Example 5 is invertible if and only if both A_{11} and A_{22} are invertible. [Hint: If A_{11} and A_{22} are invertible, the formula for A^{-1} given in Example 5 actually works as the inverse of A.] This fact about A is an important part of several computer algorithms that estimate eigenvalues of matrices. Eigenvalues are discussed in Chapter 5.
15. Suppose A_{11} is invertible. Find X and Y such that
$\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]=\left[\begin{array}{ll}I & 0 \\ X & I\end{array}\right]\left[\begin{array}{ll}A_{11} & 0 \\ 0 & S\end{array}\right]\left[\begin{array}{ll}I & Y \\ 0 & I\end{array}\right]$
where $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$. The matrix S is called the Schur complement of A_{11}. Likewise, if A_{22} is invertible, the matrix $A_{11}-A_{12} A_{22}^{-1} A_{21}$ is called the Schur complement of A_{22}. Such expressions occur frequently in the theory of systems engineering, and elsewhere.
16. Suppose the block matrix A on the left side of (7) is invertible and A_{11} is invertible. Show that the Schur complement S of A_{11} is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When A and A_{11} are both invertible, (7) leads to a formula for A^{-1}, using S^{-1}, A_{11}^{-1}, and the other entries in A.

Topics and Objectives

Section 2.5 : Matrix Factorizations

Topics
We will cover these topics in this section.

1. The $L U$ factorization of a matrix
2. Using the $L U$ factorization to solve a system
3. Why the $L U$ factorization works

Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Compute an $L U$ factorization of a matrix.
2. Apply the $L U$ factorization to solve systems of equations.
3. Determine whether a matrix has an $L U$ factorization.

Topics
We will cover these topics in this section.

Chapter 2: Matrix Algebra
Math 1554 Linear Algebra

Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity" - Alan Turing
The use of the LU Decomposition to solve linear systems was one of the areas of mathematics that Turing helped develop.

The $L U$ factorization of a matrix
2. Using the $L U$ factorization to solve a system
3. Why the $L U$ factorization works

Objectives
For the topics covered in this section, students are expected to be able to do the following.

1. Compute an $L U$ factorization of a matrix.
2. Apply the $L U$ factorization to solve systems of equations.
3. Determine whether a matrix has an $L U$ factorization.

In the beginning, ...

with integers there were *prime* factorizations...

$$
n=p_{1}^{k_{1}} \cdots p_{r}^{k r}
$$

then came the *polynomial* factorizations... $f(x)=(x-a)^{n}(x-b)^{m}$
\qquad lower
matrix factorizations appeared!

of a matrix into a product of matrices.

- Factorizations can be useful for solving $A \vec{x}=\vec{b}$, or understanding
the properties of a matrix.
- We explore a few matrix factorizations throughout this course.
- In this section, we factor a matrix into lower and into upper
triangular matrices. triangular matrices.

$$
\begin{aligned}
& A=L U^{2} \\
& A=Q R .
\end{aligned}
$$

- A rectangular matrix A is upper triangular if $a_{i, j}=0$ for $i>j$.

Examples:
Theorem
If A is an $m \times n$ matrix that can be row reduced to echelon form without row exchanges, then $A=L U, L$ is a lower triangular $m \times m$ matrix with 1 's on the diagonal, U is an echelon form of A.

Example: If $A \in \mathbb{R}^{3 \times 2}$, the LU factorization has the form:

$$
A=L U=\left(\begin{array}{lll}
1 & 0 & 0 \\
* & 1 & 0 \\
* & * & 1
\end{array}\right)\left(\begin{array}{cc}
* & * \\
0 & * \\
0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 2 & 0
\end{array}\right),\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)
$$

Ask: Can you name a matrix that is both upper and lower triangular?

Section is Suse 134

L lower triangulum

Why We Can Compute the $L U$ Factorization
Suppose A can be row reduced to echelon form U without interchanging rows. Then,

$$
E_{p} \cdots E_{1} A=U
$$

where the E_{j} are matrices that perform elementary row operations. They happen to be lower triangular and invertible, egg.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Therefore,

$$
A=\underbrace{E_{1}^{-1} \cdots E_{P}^{-1}}_{=L} U=L U .
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -5 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \boldsymbol{A}=U
$$

$$
E_{3} \quad E_{2} \quad E_{1}
$$

Using the $L U$ Decomposition
Goal: given A and \vec{b}, solve $A \vec{x}=\vec{b}$ for \vec{x}.
Algorithm: construct $A=L U$, solve $A \vec{x}=L U \vec{x}=\vec{b}$ by:

1. Forward solve for \vec{y} in $L \vec{y}=\vec{b}$.
2. Backwards solve for x in $U \vec{x}=\vec{y}$.

Example: Solve the linear system whose LU decomposition is given.

$$
A=L U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right), \quad \vec{b}=\left(\begin{array}{c}
16 \\
2 \\
-4 \\
6
\end{array}\right)
$$

know $A=L U$.
So what is \bar{x} ?
$L U \vec{x}=\vec{b}$
First solve $L \bar{y}=b$

$$
-5 R_{2}+R_{3} \rightarrow R_{3}-2 R_{1}+R_{3} \rightarrow R_{3} \quad 4 R_{1}+R_{2} \rightarrow R_{2}
$$

Then solve

$$
U_{\vec{x}}=\vec{y}
$$

Why We Can Compute the $L U$ Factorization
Suppose A can be row reduced to echelon form U without interchanging rows. Then,

$$
E_{p} \cdots E_{1} A=U
$$

where the E_{j} are matrices that perform elementary row operations. They happen to be lower triangular and invertible, egg.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Therefore,

$$
A=\underbrace{E_{1}^{-1} \cdots E_{p}^{-1}}_{=L} U=L U
$$

Using the $L U$ Decomposition
Goal: given A and \vec{b}, solve $A \vec{x}=\vec{b}$ for \vec{x}.
Algorithm: construct $A=L U$, solve $A \vec{x}=L U \vec{x}=\vec{b}$ by: how Mary

1. Forward solve for \vec{y} in $L \vec{y}=\vec{b}$. vars??
2. Backwards solve for x in $U \vec{x}=\vec{y}$.

$$
A x=b
$$

$$
\sum_{4 \times 3}^{A=L U}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right) \underbrace{\left(\sum_{4}\right)}_{\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right), \quad \vec{b}=\left(\begin{array}{c}
16 \\
2 \\
-4 \\
6
\end{array}\right)}
$$

$$
y=\left(\begin{array}{c}
16 \\
-14 \\
8 \\
0
\end{array} \left\lvert\, \quad L\left[\begin{array}{c}
16 \\
-104 \\
8 \\
8
\end{array}\right]=\left(\begin{array}{c}
16 \\
2 \\
-4 \\
6
\end{array}\right)\right.\right.
$$

$$
\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 16 \\
1 & 1 & 0 & 0 & 2 \\
1 & 2 & 1 & 0 & -4 \\
0 & -1 & -1 & 1 & 6
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 16 \\
0 & 1 & 0 & 0 & -14 \\
0 & 2 & 1 & 0 & -20 \\
0 & -1 & -1 & 1 & 6
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) 8
$$

$$
\sim\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 16 \\
0 & 1 & 0 & 0 & -14 \\
0 & 0 & 1 & 0 & 8 \\
0 & 0 & 0 & 1 & 6
\end{array}\right]
$$

(2) Solve $U_{\vec{x}}=\vec{y}$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 0 & 16 \\
0 & -1 & -1 & -14 \\
0 & 0 & 2 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 1 & 0 & 16 \\
0 & -1 & -1 & -14 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 1 & 0 & 16 \\
0 & -1 & 0 & -10 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
x_{1}=6
$$

An Algorithm for Computing LU
To compute the LU decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
2. Place entries in L such that the same sequence of row operations reduces L to I.
Note that

- In MATH 1554, the only row replacement operation we can use is to replace a row with a multiple of a row above it.
- More advanced linear algebra courses address this limitation.

Example: Compute the $L U$ factorization of A.

$$
A=\left(\begin{array}{cccc}
4 & -3 & -1 & 5 \\
-16 & 12 & 2 & -17 \\
8 & -6 & -12 & 22
\end{array}\right)
$$

Another Explanation for How to Construct L
First compute the echelon form U of A. Highlight the entries that determine the sequence of row operations used to arrive at U.

The highlighted entries describe the row reduction of A. For each highlighted pivot column, divide entries by the pivot and place the result into L.

$$
A=\left[\begin{array}{cccc}
4 & -3 & -1 & 5 \\
-16 & 12 & 2 & -17 \\
8 & -6 & -12 & 22
\end{array}\right] \sim \underset{4 R_{1}+R_{2}}{-2 R_{1}+R_{3}[}\left[\begin{array}{cccc}
4 & -3 & -1 & 5 \\
0 & 0 & -2 & 3 \\
0 & 0 & -10 & 12
\end{array}\right]
$$

$$
\sim\left[\begin{array}{cccc}
4 & -3 & -1 & 5 \\
0 & 0 & -2 & 3 \\
0 & 0 & 0 & -3
\end{array}\right]=W
$$

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
2 & 5 & 1
\end{array}\right]
$$

$$
A=L U
$$

- To solve $A \vec{x}=L U \vec{x}=\vec{b}$,

1. Forward solve for \vec{y} in $L \vec{y}=\vec{b}$.
2. Backwards solve for \vec{x} in $U \vec{x}=\vec{y}$.

To compute the LU decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
2. Place entries in L such that the same sequence of row operations reduces L to I.

- The textbook offers a different explanation of how to construct the LU decomposition that students may find helpful.
- Another explanation on how to calculate the LU decomposition that students may find helpful is available from MIT OpenCourseWare: www.youtube.com/watch?v= rhNKncra.JMk
(only)
Construct the LU decomposition of A.

$$
A=\left(\begin{array}{ccc}
3 & -1 & 4 \\
9 & -5 & 15 \\
15 & -1 & 10 \\
-6 & 2 & -4
\end{array}\right)
$$

$$
\begin{aligned}
& \left.\left.A \sim \underset{\substack{-3 R_{1}+R_{2}-\\
-5 R_{1}+R_{2}-1 \\
2 R_{1}+R_{3}}}{ } \begin{array}{ccc}
3 & -1 & 4 \\
0 & -2 & 3 \\
0 & 4 & -10
\end{array}\right] \sim \underset{c c c}{2} \begin{array}{ccc}
3 & -1 & 4 \\
0 & -2 & 3 \\
0 & 0 & -4 \\
2 R_{2}+R_{3} \rightarrow \\
0 R_{2}+R_{4} \\
0 & 0 & 4
\end{array}\right] \\
& 1 R_{3+R_{4}}^{\sim}\left[\begin{array}{ccc}
3 & -1 & 4 \\
0 & -2 & 3 \\
0 & 0 & -4 \\
0 & 0 & 0
\end{array}\right]=(l
\end{aligned}
$$

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
5 & -2 & 1 & 0 \\
-2 & 0 & -1 & 1
\end{array}\right]
$$

2.5 EXERCISES

In Exercises 1-6, solve the equation $A \mathbf{x}=\mathbf{b}$ by using the LU factorization given for A. In Exercises 1 and 2, also solve $A \mathbf{x}=\mathbf{b}$ by ordinary row reduction.

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
4 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

1. $A=\left[\begin{array}{rrr}3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-7 \\ 5 \\ 2\end{array}\right]$

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -5 & 1
\end{array}\right]\left[\begin{array}{rrr}
3 & -7 & -2 \\
0 & -2 & -1 \\
0 & 0 & -1
\end{array}\right]
$$

2. $A=\left[\begin{array}{rrr}4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 6 & -8\end{array}\right], \mathbf{b}=\left[\begin{array}{r}2 \\ -4 \\ 6\end{array}\right]$

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
4 & 3 & -5 \\
0 & -2 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

3. $A=\left[\begin{array}{rrr}2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]$
4. $A=\left[\begin{array}{rrr}2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}0 \\ -5 \\ 7\end{array}\right]$

$$
A=\left[\begin{array}{crr}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
3 / 2 & -5 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & -2 & 4 \\
0 & -2 & -1 \\
0 & 0 & -6
\end{array}\right]
$$

5. $A=\left[\begin{array}{rrrr}1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -1 & 2 & 6 & 4 \\ -4 & -1 & 9 & 8\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1 \\ 7 \\ 0 \\ 3\end{array}\right]$

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-4 & 3 & -5 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & -2 & -4 & -3 \\
0 & -3 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

6. $A=\left[\begin{array}{rrrr}1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9\end{array}\right], \mathbf{b}=\left[\begin{array}{r}1 \\ -2 \\ -1 \\ 2\end{array}\right]$

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-3 & 1 & 0 & 0 \\
3 & -2 & 1 & 0 \\
-5 & 4 & -1 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
0 & 3 & 5 & 2 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find an LU factorization of the matrices in Exercises 7-16 (with L unit lower triangular). Note that MATLAB will usually produce a permuted LU factorization because it uses partial pivoting for numerical accuracy.
7. $\left[\begin{array}{rr}2 & 5 \\ -3 & -4\end{array}\right]$
8. $\left[\begin{array}{ll}6 & 9 \\ 4 & 5\end{array}\right]$
9. $\left[\begin{array}{rrr}3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6\end{array}\right]$
10. $\left[\begin{array}{rrr}-5 & 3 & 4 \\ 10 & -8 & -9 \\ 15 & 1 & 2\end{array}\right]$
11. $\left[\begin{array}{rrr}3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0\end{array}\right]$
12. $\left[\begin{array}{rrr}2 & -4 & 2 \\ 1 & 5 & -4 \\ -6 & -2 & 4\end{array}\right]$
13. $\left[\begin{array}{rrrr}1 & 3 & -5 & -3 \\ -1 & -5 & 8 & 4 \\ 4 & 2 & -5 & -7 \\ -2 & -4 & 7 & 5\end{array}\right]$
14. $\left[\begin{array}{rrrr}1 & 4 & -1 & 5 \\ 3 & 7 & -2 & 9 \\ -2 & -3 & 1 & -4 \\ -1 & 6 & -1 & 7\end{array}\right]$
15. $\left[\begin{array}{rrrr}2 & -4 & 4 & -2 \\ 6 & -9 & 7 & -3 \\ -1 & -4 & 8 & 0\end{array}\right]$
16. $\left[\begin{array}{rrr}2 & -6 & 6 \\ -4 & 5 & -7 \\ 3 & 5 & -1 \\ -6 & 4 & -8 \\ 8 & -3 & 9\end{array}\right]$
17. When A is invertible, MATLAB finds A^{-1} by factoring $A=$ $L U$ (where L may be permuted lower triangular), inverting L and U, and then computing $U^{-1} L^{-1}$. Use this method to compute the inverse of A in Exercise 2. (Apply the algorithm of Section 2.2 to L and to U.)
18. Find A^{-1} as in Exercise 17, using A from Exercise 3.

$$
E_{x} \cdot H=\left\{\vec{x} \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=1\right\}
$$

Q_{i} is it a sobspace?
Q_{2} : can yau give me 4 vectess in H ?

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \in H \cup \quad \cos :\left[\left.\begin{array}{l}
g \\
g
\end{array} \right\rvert\, \notin J+r\right. \\
& \vec{v}_{2}=\left[\begin{array}{l}
0 \\
i
\end{array}\right) \in み v
\end{aligned}
$$

\square
e.g.,
"three vectors ubs pare
pot a subs
$\{\vec{u}, \vec{v}, \vec{w}\}$
*the span of the electors
subs
$\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\} \quad$ The span of \dot{u}, \vec{v}, and \vec{w} \vec{u}, \bar{v}, and $\vec{\omega}$
*the set containing only the zero yegtoce. cos
$\{0\}$

$$
\begin{aligned}
& \vec{x}=c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w} \\
& \vec{y}=d_{1} \vec{u}+d_{2} \vec{v}+d_{3} \vec{w} \\
& \vec{x}+\vec{y}=\left(c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}\right)+\left(d_{1} \vec{u}+d_{2} \vec{v}+d_{3} \vec{w}\right) \\
&=\left(c_{1}+d_{1}\right) \vec{u}+\left(c_{2}+d_{2}\right) \vec{v}+\left(c_{3}+d_{3}\right) \vec{w} \in \operatorname{san}\left\{u_{1} s_{1} \overrightarrow{\}}\right.
\end{aligned}
$$

$$
k \vec{x}=k G_{1} \vec{u}+k C_{2} \dot{v}+k C_{3} \vec{w}
$$

*all vectors in $\mathrm{R}^{\wedge} 2$ that are either on the x-axis or on the y-axis

This is a subspace, spanned by $\vec{v}_{1}, \ldots, \vec{v}_{p}$.

Definition
Given an $m \times n$ matrix $A=\left[\begin{array}{lll}\vec{a}_{1} & \cdots & \vec{a}_{n}\end{array}\right]$

1. The column space of $A, \operatorname{Col} A$, is the subspace of \mathbb{R}^{m} spanned by $\vec{a}_{1}, \ldots, \vec{a}_{n}$.
2. The null space of $A, \operatorname{Null} A$, is the subspace of \mathbb{R}^{n} spanned by the set of all vectors \vec{x} that solve $A \vec{x}=\overrightarrow{0}$.

Section 28 Slide 156

$$
\text { ct. } x_{1}\left[\begin{array}{c}
1 \\
-4 \\
-3
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
6 \\
7
\end{array}\right]+x_{3}\left(\begin{array}{c}
-4 \\
-2 \\
6
\end{array}\right)=\left[\begin{array}{c}
3 \\
3 \\
-4
\end{array}\right] \Leftrightarrow A \vec{x}=\stackrel{1}{b}
$$

consistent?

$$
\left[A|b|=\left\lvert\, \begin{array}{ccc|c}
1 & -3 & -4 & 3 \\
-4 & 6 & -2 & 3 \\
-3 & 7 & 6 & -4
\end{array}\right.\right]
$$

$$
\sim\left[\begin{array}{lll|l}
1 & -3 & -4 & 3 \\
0 & -6 & -18 & 15 \\
0 & -2 & -6 & 5
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & -3 & -4 & 5 \\
0 & 1 & 3 & -5 / 2 \\
0 & 1 & 3 & -5 / 2
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 2
\end{array}\right]
$$

$$
A x=0 \quad A \sim\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \quad x=s\binom{-5}{-3} \quad \operatorname{Nul} A=\operatorname{sean}\left\{\left\{\begin{array}{c}
-5 \\
1
\end{array}\right\}\right.
$$

$\operatorname{Col}(A)=\operatorname{span}\{\{11,1!2\}$

$$
x=s[i]+t[i]
$$

$$
\operatorname{Nul}(A)=\left\{\dot{x} \mid A_{x}=0\right\}
$$

a) H is a null space for what matrix A ? b) Construct a basis for H.

$$
H=N u \backslash A=\{\vec{x} \mid A \bar{x}=\overrightarrow{0}\}
$$

but $\left.\left\{\begin{array}{c}-3 \\ -3 \\ 2\end{array},\left[\begin{array}{c}-2 \\ -2 \\ -4\end{array}\right), \left.\begin{array}{c}-1 \\ 2 \\ 5\end{array} \right\rvert\,, \begin{array}{c}1 \\ 8 \\ 8\end{array}\right), \begin{array}{c}-7 \\ -1 \\ -4\end{array}\right\}$ is
a meanly dependent set.
So there five vestal donit form a basis.
$\left\{\left|\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right|,\left|\begin{array}{c}-1 \\ -1 \\ 5\end{array}\right|\right\}$ is a basil for colt
Warnings! - (O) dort take the columns of REF of A!!
(2) buses are not unique!!

A subspace of \mathbb{R}^{n} is any set H in \mathbb{R}^{n} that has three properties:
a. The zero vector is in H.
b. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u}+\mathbf{v}$ is in H.
c. For each \mathbf{u} in H and each scalar c, the vector $c \mathbf{u}$ is in H.

FIGURE 1
Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ as a plane through the origin.

Theorem
The pivotal columns a matrix A for a basis or the column space of A.

Use the pivotal columns of A, not the pivotal columns of the Echelon form.
Theorem
Suppose that the matrix A has reduced echelon form $\left[\begin{array}{ll}I & F \\ 0 & 0\end{array}\right]$, in block 7
matrix form. Then a basis of the Null space of A is given by the columns
of $\left[\begin{array}{c}F \\ -I\end{array}\right]$.
The assumption says that the first few columns are pivotal, and the last
few are all free. This can be assumed, after the exchange of columns.
few are all free. This can be assumed, after the exchange of columns.

$$
\begin{aligned}
& \uparrow \text { use vector } \\
& \text { in puametriz } \\
& \text { vector } \\
& \text { form }
\end{aligned}
$$

Additional Example (if time permits)

Let $V=\left\{\left.\binom{a}{b} \in \mathbb{R}^{2} \right\rvert\, a b=0\right\}$. is V a subspace?
Not a subspre egg.
$\left[\begin{array}{l}1 \\ 0\end{array}\right] \in V$
$\left[\begin{array}{l}0 \\ c\end{array}\right) \in V$
but $\binom{0}{1}+\binom{1}{0}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ \&

$$
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

2.8 EXERCISES

Exercises 1-4 display sets in \mathbb{R}^{2}. Assume the sets include the bounding lines. In each case, give a specific reason why the set H is not a subspace of \mathbb{R}^{2}. (For instance, find two vectors in H whose sum is not in H, or find a vector in H with a scalar multiple that is not in H. Draw a picture.)
1.

2.

3.

4.

5. Let $\mathbf{v}_{1}=\left[\begin{array}{r}2 \\ 3 \\ -5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-4 \\ -5 \\ 8\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{r}8 \\ 2 \\ -9\end{array}\right]$. Determine if \mathbf{w} is in the subspace of \mathbb{R}^{3} generated by \mathbf{v}_{1} and \mathbf{v}_{2}.
6. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 4 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}4 \\ -7 \\ 9 \\ 7\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}5 \\ -8 \\ 6 \\ 5\end{array}\right]$, and $\mathbf{u}=$ $\left[\begin{array}{r}-4 \\ 10 \\ -7 \\ -5\end{array}\right]$. Determine if \mathbf{u} is in the subspace of \mathbb{R}^{4} generated by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
7. Let $\mathbf{v}_{1}=\left[\begin{array}{r}2 \\ -8 \\ 6\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 8 \\ -7\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}-4 \\ 6 \\ -7\end{array}\right]$, $\mathbf{p}=\left[\begin{array}{r}6 \\ -10 \\ 11\end{array}\right]$, and $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$.
a. How many vectors are in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
b. How many vectors are in $\operatorname{Col} A$?
c. Is \mathbf{p} in $\operatorname{Col} A$? Why or why not?
8. Let $\mathbf{v}_{1}=\left[\begin{array}{r}-3 \\ 0 \\ 6\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}0 \\ -6 \\ 3\end{array}\right]$, and $\mathbf{p}=$ $\left[\begin{array}{r}1 \\ 14 \\ -9\end{array}\right]$. Determine if \mathbf{p} is in $\operatorname{Col} A$, where $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$.
9. With A and \mathbf{p} as in Exercise 7, determine if \mathbf{p} is in $\operatorname{Nul} A$.
10. With $\mathbf{u}=(-2,3,1)$ and A as in Exercise 8, determine if \mathbf{u} is in $\operatorname{Nul} A$.

In Exercises 11 and 12, give integers p and q such that $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{p} and $\operatorname{Col} A$ is a subspace of \mathbb{R}^{q}.
11. $A=\left[\begin{array}{rrrr}3 & 2 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1\end{array}\right]$
12. $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 4 & 5 & 7 \\ -5 & -1 & 0 \\ 2 & 7 & 11\end{array}\right]$
13. For A as in Exercise 11, find a nonzero vector in $\operatorname{Nul} A$ and a nonzero vector in $\operatorname{Col} A$.
14. For A as in Exercise 12, find a nonzero vector in $\operatorname{Nul} A$ and a nonzero vector in $\operatorname{Col} A$.

Determine which sets in Exercises 15 -20 are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify each answer.
15. $\left[\begin{array}{r}5 \\ -2\end{array}\right],\left[\begin{array}{r}10 \\ -3\end{array}\right]$
16. $\left[\begin{array}{r}-4 \\ 6\end{array}\right],\left[\begin{array}{r}2 \\ -3\end{array}\right]$
17. $\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}5 \\ -7 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 3 \\ 5\end{array}\right]$
18. $\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}-5 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}7 \\ 0 \\ -5\end{array}\right]$
19. $\left[\begin{array}{r}3 \\ -8 \\ 1\end{array}\right],\left[\begin{array}{r}6 \\ 2 \\ -5\end{array}\right]$
20. $\left[\begin{array}{r}1 \\ -6 \\ -7\end{array}\right],\left[\begin{array}{r}3 \\ -4 \\ 7\end{array}\right],\left[\begin{array}{r}-2 \\ 7 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 8 \\ 9\end{array}\right]$

In Exercises 21 and 22, mark each statement True or False. Justify each answer.
21. a. A subspace of \mathbb{R}^{n} is any set H such that (i) the zero vector is in H, (ii) \mathbf{u}, \mathbf{v}, and $\mathbf{u}+\mathbf{v}$ are in H, and (iii) c is a scalar and $c \mathbf{u}$ is in H.
b. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in \mathbb{R}^{n}, then Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the same as the column space of the matrix $\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{p}\end{array}\right]$
c. The set of all solutions of a system of m homogeneous equations in n unknowns is a subspace of \mathbb{R}^{m}.
d. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.
e. Row operations do not affect linear dependence relations among the columns of a matrix.
22. a. A subset H of \mathbb{R}^{n} is a subspace if the zero vector is in H.
b. Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ in \mathbb{R}^{n}, the set of all linear combinations of these vectors is a subspace of \mathbb{R}^{n}.
c. The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^{n}.
d. The column space of a matrix A is the set of solutions of $A \mathrm{x}=\mathrm{b}$.
e. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for $\operatorname{Col} A$.

Exercises 23-26 display a matrix A and an echelon form of A. Find a basis for $\operatorname{Col} A$ and a basis for $\operatorname{Nul} A$.
23. $A=\left[\begin{array}{lllr}4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3\end{array}\right] \sim\left[\begin{array}{lllr}1 & 2 & 6 & -5 \\ 0 & 1 & 5 & -6 \\ 0 & 0 & 0 & 0\end{array}\right]$
24. $A=\left[\begin{array}{rrrr}-3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2\end{array}\right] \sim\left[\begin{array}{rrrr}1 & -3 & 6 & 9 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$
25. $A=\left[\begin{array}{rrrrr}1 & 4 & 8 & -3 & -7 \\ -1 & 2 & 7 & 3 & 4 \\ -2 & 2 & 9 & 5 & 5 \\ 3 & 6 & 9 & -5 & -2\end{array}\right]$

$$
\sim\left[\begin{array}{rrrrr}
1 & 4 & 8 & 0 & 5 \\
0 & 2 & 5 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

26. $A=\left[\begin{array}{rrrrr}3 & -1 & 7 & 3 & 9 \\ -2 & 2 & -2 & 7 & 5 \\ -5 & 9 & 3 & 3 & 4 \\ -2 & 6 & 6 & 3 & 7\end{array}\right]$
$\sim\left[\begin{array}{rrrrr}3 & -1 & 7 & 0 & 6 \\ 0 & 2 & 4 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
27. Construct a nonzero 3×3 matrix A and a nonzero vector b such that \mathbf{b} is in $\operatorname{Col} A$, but \mathbf{b} is not the same as any one of the columns of A.
28. Construct a nonzero 3×3 matrix A and a vector \mathbf{b} such that \mathbf{b} is not in $\operatorname{Col} A$.
29. Construct a nonzero 3×3 matrix A and a nonzero vector b such that \mathbf{b} is in $\operatorname{Nul} A$.
30. Suppose the columns of a matrix $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{p}\end{array}\right]$ are linearly independent. Explain why $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right\}$ is a basis for $\operatorname{Col} A$.

In Exercises 31-36, respond as comprehensively as possible, and justify your answer.
31. Suppose F is a 5×5 matrix whose column space is not equal to \mathbb{R}^{5}. What can you say about Nul F ?
32. If R is a 6×6 matrix and $\operatorname{Nul} R$ is not the zero subspace, what can you say about $\operatorname{Col} R$?
33. If Q is a 4×4 matrix and $\operatorname{Col} Q=\mathbb{R}^{4}$, what can you say about solutions of equations of the form $Q \mathbf{x}=\mathbf{b}$ for \mathbf{b} in \mathbb{R}^{4} ?
34. If P is a 5×5 matrix and $\mathrm{Nul} P$ is the zero subspace, what can you say about solutions of equations of the form $P \mathbf{x}=\mathbf{b}$ for b in \mathbb{R}^{5} ?
35. What can you say about $\operatorname{Nul} B$ when B is a 5×4 matrix with linearly independent columns?
36. What can you say about the shape of an $m \times n$ matrix A when the columns of A form a basis for \mathbb{R}^{m} ?
[M] In Exercises 37 and 38, construct bases for the column space and the null space of the given matrix A. Justify your work.
37. $A=\left[\begin{array}{rrrrr}3 & -5 & 0 & -1 & 3 \\ -7 & 9 & -4 & 9 & -11 \\ -5 & 7 & -2 & 5 & -7 \\ 3 & -7 & -3 & 4 & 0\end{array}\right]$
38. $A=\left[\begin{array}{rrrrr}5 & 2 & 0 & -8 & -8 \\ 4 & 1 & 2 & -8 & -9 \\ 5 & 1 & 3 & 5 & 19 \\ -8 & -5 & 6 & 8 & 5\end{array}\right]$

WEB Column Space and Null Space
WEB A Basis for $\operatorname{Col} A$

