
Math 1554 Linear Algebra Spring ’23

Handwritten Homework Assignments - Exploration for MATH 1554

For each assignment, complete the questions by hand on a separate sheet of paper. Write neatly

and use complete sentences where necessary. You must submit original work, but I’m okay

with you all working together to share ideas. Handwritten homework assignments are due on

Fridays in Gradescope, and no late submissions are accepted.

Week 1: Practice sketching in 3D. In R3, using the coordinates x, y, z, sketch the following making

a new sketch for each part (a)-(d):

(i) a horizontal plane,

(ii) the plane consisting of points satisfying the condition that x = 0 (aka the back wall),

(iii) the plane z = 0 and the plane x = 0 on the same axes, and sketch and label the

intersection of these two planes,

(iv) a line passing through the origin which is not contained in any of the three coordi-

nate planes, include and label at least three points on the line,

(v) the plane defined by x− y = 0, include and label at least four points in this plane

no three of which are colinear.

In each case, you are practicing drawing an accurate, representative graph of the plane of

points which satisfy the given equation in the variables x, y, and z.

Week 2: Practice with span, linear combination, and inconsistent systems. (a) Choose two vectors

v, w in R2 and a third vector b also in R2, and express b as a linear combination of v, w by

finding scalars c1, c2 such that c1v+c2w = b. Sketch the situation in R2 with an illustration that

uses the parallelogram rule. (b) Repeat part (a) with vectors in R3 such that the augmented

matrix [v w | b] gives a consistent system, again illustrating by graphing but this time in R3.

(c) Why is it harder to find a consistent system for part (b) compared to part (a)? Explain

your idea clearly using complete sentences.

Warning!

please note: Your submissions for this and future exploration assignments need to contain

vectors which are general looking. Choosing vectors which are scalar multiples of

[
1

0

]
,

[
0

1

]
,

or

1

0

0

 ,
0

1

0

 ,
0

0

1

, or have too many zeros or ones, or are otherwise too simple and miss the

point of the exploration will receive a deduction of points.
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Please, do not ask on Piazza if your vectors are general enough to get full credit. The explo-

rations are assignments which require you to make a judgement call, to explore a particular

concept of the course and not to come up with the simplest example which satisfies the

minimum requirements of the assignment.

Week 3: Learn some basics of MATLAB. See Sal’s personal website for links to the MATLAB #1

Exploration. (requires MATLAB installation)

Week 4: Propositional logic. This week we will explore the basics of propositional logic in order to

help develop some framework to practice True/False questions when studying for the exam.

The assignment this week is to complete the three questions Q1, Q2, Q3 and upload to

Gradescope. The additional (non-question) text is just to help you understand the assignment.

Let’s start with the main definitions:

Definition: A mathematical statement (aka, a proposition) is a sentence which is either

true or false.

Each of the following are statements; they can be true or false, depending on the choice of

vectors and/or matrices in each statement.

1. A~x = ~b is consistent.

2. [A | ~b] is row equivalent to [C | ~d].

3. A~x = ~0 has a non-trivial solution.

4. The columns of A are linearly dependent.

5. T (~x) = A~x is onto.

For example, the first statement (1.) is true if A =
[
1 0
0 1
0 0

]
and ~b =

[
1
2
0

]
, but this statement is

false if A =
[
1 0
0 1
0 0

]
and ~b =

[
1
2
3

]
.

Q1: You try it! Pick one of the other statements (2.)-(5.) above and come up with choices for

the vectors/matrices that make the statement true, and choices that make the same statement

false. Check with calculations that your example works for each.

Note: please write the problem statement of the problem you are solving, to help the grader.

Statements can be combined in a variety of ways to create new statements, using for example

and, or, or implies.
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For example, each of the following are statements. (connecting word highlighted for emphasis)

6. [A | ~b] is row equivalent to [C | ~d] and A~x = ~b is consistent.

7. A~x = ~0 has a non-trivial solution or T (~x) = A~x is onto.

8a. The columns of A are linearly dependent implies A~x = ~0 has a non-trivial solution.

8b. If the columns of A are linearly dependent, then A~x = ~0 has a non-trivial solution.

The most common way that an implies statement is written is to use if and then. The

statements (8a.) and (8b.) say exactly the same thing using different wording.

An implication statement is true whenever knowing that the “if part” is true forces the “then

part” to also be true. So (8a.) is a true implication because whenever the columns of A are

linearly dependent there is a free variable in the system A~x = ~0, and assigning a non-zero

value to the free variable gives a non-zero ~x which satisfies A~x = ~0.

On the other hand, an implication statement is false if for some choice making the “if part”

true, the “then part” is false. For example consider the following false implication.

9. If A~x = ~b and A~y = ~b, then A(~x+ ~y) = ~b.

This implication is false because there is a counterexample for which the first part is true, but

the second part is false. For example, choosing A = [ 1 1
1 1 ] and ~b = [ 33 ] we see that ~x = [ 12 ] and

~y = [ 30 ] both satisfy A~x = ~b and A~y = ~b, but ~x + ~y = [ 42 ] and so A(~x + ~y) = [ 66 ] (and [ 66 ] is

not ~b).

Q2: You try it! Select any one true and any one false true/false question from any of the

practice exams that use implies (aka an if-then statement). For each of the two problems,

identify the propositions in the problem (the “if part” and the “then part”). If the implication

is false, provide a counter-example with explanation/calculations to show why it works. If the

implication is true, give a short general∗ explanation using precise and correct terminology

from class. (∗ a short general proof - not an example)

Note: please write the problem statement of the problem you are solving, to help the grader.

Finally, some statements can have one or more mathematical quantifiers. There are two

kinds of mathematical quantifiers, which are the universal quantifier for all (aka for every),

and the existential quantifier for some (aka there exists).

For example, each of the following statements has a quantifier. (quantifier highlighted)
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10. If A~x = ~b is consistent for some ~b ∈ Rm, then A has a pivot in every row.

11. If A does not have a pivot in every column and T (~x) = A~x, then for every ~x1 and ~x2 with

~x1 6= ~x2 we have that T (~x1) = T (~x2).

Q3: You try it! In (10.) and (11.) identify the propositions in each problem. The implications

(10.) and (11.) are both false; provide a counterexample to one of the implications. Give

a short description (one or two short sentences) as to why your counterexample works, and

verify any assertions you make with calculations.

Note: please write the problem statement of the problem you are solving, to help the grader.

Hint: For (10.) a counterexample will be a matrix A and a vector ~b such that A~x = ~b is

consistent, but A does not have a pivot in every row.

Hint: For (11.) a counterexample will be a matrix A that does not have a pivot in every

column, and such that there exist vectors ~x1 and ~x1 such that ~x1 6= ~x2 and T (~x1) 6= T (~x2).

Week 5: More true/false practice. Consider the following problems from Exam 1.

1. 1(a)iii T/F

If ~v and ~w are solutions to an inhomogeneous system A~x = ~b, then ~v − ~w is a

solution to A~x = ~0.

2. 1(a)v T/F

If A is size 3× 4 and none of the rows of A consist entirely of zeros, then A has 3 pivots.

3. 1(b)i possible/impossible

An m× n matrix A with a pivot in its last column such that A~x = ~0 is inconsistent.

4. 1(b)i T/F - modified Note: now T/F and inhomogeneous.

If A is an m× n matrix with a pivot in its last column, then A~x = ~b is inconsistent for any

choice of vector ~b.

5. 1(b)ii possible/impossible

Two nonzero vectors ~v1, ~v2 such that {~v1, ~v2} is linearly independent and {~v1 − ~v2, ~v1 + ~v2}
is linearly dependent.

For each of the true/false and possible/impossible problems above do all of the following.

(i) Write the problem and provide the answer.
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(ii) (*)Complete rule #1: do one example which either demonstrates that the state-

ment is satisfied (an example which shows that the statement could be true) or that

the statement is not satisfied (a counter-example which shows that the statement

must be false). For example, for (1.) you would need to find a matrix A, and

vectors ~v, ~w,~b so that ~v and ~w are solutions to A~x = ~b and then check if ~v − ~w is

a solution to A~x = ~0 or not. For your example, say whether your example was a

counter-example or not.

(iii) Identify the relevant definitions in the statement. For example, for (2.) you need

to define (a) size of a matrix, and (b) what a pivot is. You must use the precise

definition from the textbook/lecture, here. Do not summarize or provide some

intuitive definition! I want the textbook definition.

(*) Note: For part (ii), your example does not have to be a counter-example if the statement

is false. Just do any example.

Finally, create a new Problem (6.) that you make by picking one of the five problems and

modifying it in some way. For example, you can change the premise of an implication or its

conclusion. Or you can make a true/false into an impossible/possible, or visa versa. Another

idea would be to change the order of the implication by swapping the if-then statements, or

negating either the if-part, or the then-part, or both.

Repeat steps (i)-(ii) for problem (6.) and indicate which of the 5 problems you are modifying.

Week 6: Walkthrough Nul(A) is a subspace.

Step 1: Pick a matrix and find Nul(A). Pick a matrix A of size no smaller than 3×5 (to

get a good feel for the problem). Choose entries not all positive, and not too many zeros, and

your matrix shouldn’t be rref (ideally, but it’s ok to pick a matrix in rref if you want - or just

start with a matrix in rref and do some row operations to jumble it up). Find the null space

Nul(A) by finding the parametric vector form of the general solution x to Ax = 0, and write

Nul(A) = span{v1, v2, . . . , vk} where v1, v2, . . . , vk are the vectors appearing in parametric

vector form.

Step 2: An example that Nul(A) is closed under vector addition. Choose two vectors

w1,w2 in the span Nul(A) = span{v1, . . . , vk} from step 1. Do this by taking two or more

vectors in the basis from step 1 and adding them to each other using some scalars, i.e. chose

a random linear combination of the vectors v1, . . . , vk from step 1. Do this twice with different

weights each time, once to get w1 and once to get w2. Add these vectors together to get

z = w1 + w2. Verify that z is in the null space of A using the definition of null space, by

multiplying A times z and verifying that Az = 0.
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Step 2b: Answer the following question. What are the weights of z if you write z as a

linear combination of v1, . . . , vk, and how are these weights related to the weights of w1,w2?

Step 3: An example that Nul(A) is closed under scalar multiplication. Let w be

either w1 or w2 from step 2, one of the random vectors in the null space of A. Choose a

random scalar c. Check that cw is in the null space of A by verifying A(cw) = 0.

Step 3b: Answer the following question. What are the weights of cw if you write cw as

a linear combination of v1, . . . , vk, and how are these weights related to the weights of w?

Step 4: The general case. Try to convince yourself that no matter how A is chosen, Nul(A)

is always closed under scalar multiplication and vector addition. Hint: one way is to use the

facts about matrix-vector muliplication that A(x + y) = Ax + Ay and A(cx) = c(Ax), and

another option is to think about span and how if x, y are in span{v1, . . . , vk} the weights of

x+ y are related to the weights of x, y and the weights of cx are related to the weights of x.

Week 7: Transformations and the determinant.

Step 1: Sketch a parallelogram somewhere in R2 such that none of the vertices of the par-

allelogram lie on the origin. Label the points of the parallelogram a, b, c, d and also label the

coordinates (x1, x2) for each of the four points. Label the parallelogram S for shape.

Step 2b: Showing your work, compute the area area(S) using the content of Section 3.3, by

finding a pair of vectors ~v1, ~v2 which determine the parallelogram from (Step 1). Go back and

label the vectors ~v1, ~v2 in your sketch from (Step 1).

Step 2: Choose a (somewhat random) linear transformation T : R2 → R2 which can be

anything except a transformation from the following list:

(i) the transformation should not have a diagonal standard matrix,

(ii) the transformation should be invertible (one-to-one and onto),

(iii) the transformation should not be a single rotation or a single reflection∗.

( ∗) it is ok for the transformation you pick to be a rotation followed by a reflection, for

example. However, if your transformation is ‘two rotations’ or ‘two reflections’ but can be

represented by a single rotation or single reflection, then you will lose points.

Step 3: Transform your shape S from (Step 1) using your transformation T from (Step 2).

That is, sketch the image of S in R2. Make a new sketch for this part and label the images

T (a), T (b), T (c), T (d) and give the new coordinates for all four points.
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Step 3b: Showing all work, compute the area area(T (S)) using the same method as (Step

2b) by finding the images of ~v1, ~v2 under the transformation T . Label the images T (~v1), T (~v2)

in your sketch from (Step 3).

Step 4: Compute detA where A is the standard matrix of T (~x) = A~x, and compare the areas

area(S) and area(T (S)) with the value of detA. Write a general formula which relates these

three quantities.

Week 8: MATLAB #2 Basis of Eigenvectors and Markov chains. Note: see Sal’s webpage.

Week 9: Two separate parts.

1. Find a 2×2 matrix A with real entries with no real eigenvalues and show that it is correct

by finding the characteristic polynomial and explaining why it has no real roots.

2. Find all eigenvalues and a corresponding eigenvector for each matrix below without cal-

culations by thinking it out using the linear transformation’s geometric interpretation.

For each matrix, graph each eigenvector and it’s image after the transformation as well as a

random non-eigenvector. Check your graph is accurate with matrix multiplication.

(i) A =

[
0 0

0 0

]
, TA =zero.

(ii) A =

[
0 0

0 1

]
, TA =projection onto y-axis.

(iii) A =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, TA =rotation by θ.

(and state the values of θ for which A has eigenvectors)

(iv) A =

[
0 −1

−1 0

]
, TA =reflect about the line “y = −x”.

(v) A =

[
1 0

0 3

]
, TA =stretch in x-direction.

(vi) A =

[
1 1

0 1

]
, TA =shear.

(vii) A =

1 0 0

0 1 0

0 0 2

, TA =stretch z-axis.

(viii) A =

1 0 0

0 0 −1

0 1 0

, TA =rotate by 90◦ about the x-axis.
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Week 10: note: This week’s assignment doesn’t have to be handwritten. (For 1pt) Write a para-

graph which explains how eigenvectors/eigenvalues or some other topic from the course are

used in a field which interests you. Be specific and put some thought into this. (For 2pt) If

your paragraph is not essentially the thing on wikipedia about how bridges have something to

do with eigenvalues, but actually give some details or original content then you get 2pts instead

of 1pt. (For 3pt) If you also support your research with real math or alternately something

creative. This has to include some mathematical content but can take any form whatsoever.

Last year’s submissions included a poem, several posters, a few slide-show presentations like

using PowerPoint, etc., and quite a few of them actually were pretty decent research project

results that I was quite impressed by, but I remember the poem the best; it was funny and it

used the right math ideas about linear algebra to be funny, which essentially forces that the

person understood the concepts. It was brilliant.

warning: Your submission must not be something already covered this semester, or about

something we will cover later. So you can not write about the Google matrix, for instance.

If you want to write about a topic that was cut but appeared previously then that’s ok (e.g.,

Leontief, homogeneous coordinates, computer graphics.)

Please understand the point of this exercise, should you choose to do it: Pick any scientific

discipline. I mean any. If it is scientific it’s ok: how to build a bridge, how do design a new

chemical, how to solve some hard algorithmic problem using computers (like how many stars

the Netflix algorithm should predict for your enjoyment of the 1977 original version of Disney’s

Pete’s Dragon, for example). Take 5 steps into your chosen scientific field and you will bump

into linear algebra. That’s the exercise. 1pt is essentially “write down in your own words

what wiki has to say about it”, 2pts is essentially “do something a little better but without

any real math content”, and then 3pts is “a pretty good job explaining how a specific concept

from linear algebra is used in a scientific field you are interested in”, where I will collect and

grade these myself so it is up to my subjective expert opinion if what you say is a good job

with the math explaining.

Week 11: This exercise will ask you to explore the equality Null(AT ) = (Col(A))⊥.

This is a hybrid exploration: We recommend that you use MATLAB initially to find good

vectors (hand calculations not too terrible) for the submission, but you need to submit hand-

written work with steps shown for the actual submission in Gradescope.

Step 1: Pick two random looking and linearly independent vectors ~u and ~v in Rn with n ≥ 3,

and use technology to find a vector ~w which is orthogonal to both ~u and ~v by guess-and-check

(if after a few attempts you can not find a suitable vector w then proceed to the next step).
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Step 2: Next, we will explore how to find all possible vectors w using systems of equations.

Starting with an arbitrary vector (e.g., w=[a;b;c;d] if n = 4) write down a system of linear

equations coming from the fact that ~u · ~w = 0 and ~v · ~w = 0 and using the entries of ~u,~v as

coefficients and the entries of ~w as variables.

Solve this system of equations to find a general solution to the vectors ~w such that ~w is

perpendicular to both ~u and ~v. Check that ~u · ~w = 0 and ~v · ~w = 0. Then, answer the following:

(i) How many equations did you need to solve in order to find a general solution for

the ~w’s? and how many variables were in each equation?

(ii) Why is any vector in Col([~u ~v]) perpendicular to ~w? Give a short proof.

(iii) Explain in at most two sentences why it is true that for any two vectors ~x, ~y we have

that ~x · ~y = ~xT~y. Your explanation needs to be general, not specific to an example.

(iv) Why is any vector in Nul([~u ~v]T ) orthogonal to both ~u and ~v? Give a short proof.

Week 12: MATLAB #3 - see Sal’s website for instructions and supplementary documents.

Week 13: MATLAB #4 - see Sal’s website for instructions.

Week 13: MATLAB #5 - see Sal’s website for instructions and supplementary documents.

https://sbarone7.math.gatech.edu/ma1554s23.html
https://sbarone7.math.gatech.edu/ma1554s23.html
https://sbarone7.math.gatech.edu/ma1554s23.html

