The homogeneous equations in Section 1.5 can be studied from a different p by writing them as vector equations. In this way, the focus shifts from the solutions of $A \mathbf{x}=\mathbf{0}$ to the vectors that appear in the vector equations.
2

3
4
4

DEFINITION
An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{2}
\end{equation*}
$$

Equivalent defy * $A x=0$ has only the trinal sid

$$
A=\left[v_{1}, v_{2} \ldots v_{p}\right]
$$

* A has a pivot in every cal.

Itempool
 Itempool $A=\left[\begin{array}{lll}v_{1} & \ldots & v_{p}\end{array}\right]$

OWE ONE OHG ONE ONE OHG

FACTS: If A is $m \times n \quad A=\left[v_{1} \ldots, v_{n}\right]$

* If $n>m$ then $\left\{v_{1}, \ldots, v_{1}\right\}$ hin dee

7 If $\left\{v, \ldots, v_{p}\right\}$ are lie ind tree r $m \geqslant n$.

* $A x=0$ has a free var $\Rightarrow\left\{v_{1}, \ldots, v_{n}\right\}$ lin dee.

Ex. Which of the following sets of vectors are line ind live doe
(1)

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

$$
\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 3 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

knearly dependent.

An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation
has only the trivial solution. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exist weights c_{1}, \ldots, c_{p}, not all zero, such that
$c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}$
1 deanticus
Eqvivient defoe * $A x=0$ has only the trinal sid.
$A=\left[\begin{array}{lll}v_{1} v_{2} & \ldots & v_{p}\end{array}\right]$
FACTS: If A is $m \times n ~ A=\left[y_{1} \ldots v_{n}\right]$

$$
\begin{gathered}
\text { * A has a power in every d. } \\
\left.A=1 . \ldots, v_{\mathrm{p}}\right)
\end{gathered}
$$

分

* If $n>m$ then $\{n, \ldots, v a\}$ lu e de
* if \{u, ..yer for he in + tree r $m \geqslant n$.
* $A x=0$ has a free var lay. free
(ii) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$

$$
\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 3 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

linearly dependent:

$$
\begin{aligned}
& \text { If } \left.t=5 \quad \vec{x}=\left\lvert\, \begin{array}{l}
20 \\
-5 \\
5
\end{array}\right.\right] \quad \sim \quad\left|\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right| \\
& {\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1
\end{array}\right)\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=(2)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+(-9)\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]+\operatorname{c5}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] V} \\
& \text { (2) } \left.\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
2
\end{array}\right]\right\}\right]\left[\begin{array}{ll|l}
1 & 2 & 0 \\
2 & 4 & 0 \\
1 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l|l}
1 & 6 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& x=t\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] \\
& \text { Solis to } \\
& A_{x}=0 \\
& \text { deepen deuced }
\end{aligned}
$$

lin independent A

$$
\left.\left.\left(0 \left\lvert\, \begin{array}{l}
1 \\
0
\end{array}\right.\right)+0 \right\rvert\, \begin{array}{l}
2 \\
2 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\binom{0}{0}
$$

why bc A has a port on every al
(3) $\frac{\left[\begin{array}{l}\left\{\left[\begin{array}{ll}1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\} \\ 0\end{array}\right]}{} \underset{\text { lin dep } l}{ }\left[\begin{array}{lll}0 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$
in RREE $\begin{gathered}\text { already } \\ \text { a } \\ \text { a }\end{gathered}$
(4) $\left.\left[\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right], \begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}\right]\left[\begin{array}{cccc}1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$
\uparrow
has at most 3 pivots So at least 1 free va!
so lin dephdist vector.

A set of two vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

$$
\left\{\left.\begin{array}{ll}
0 \\
0 \\
0
\end{array} \right\rvert\,\right.
$$

THEOREM 7 Characterization of Linearly Dependent Sets

An indexed set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_{1} \neq \mathbf{0}$, then some \mathbf{v}_{j} (with $j>1$) is a linear combination of the preceding vectors, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

$$
\left\{\left|\begin{array}{l}
1 \\
1 \\
1
\end{array}\right|,\left|\begin{array}{l}
2 \\
2 \\
2
\end{array}\right|,\left|\begin{array}{l}
0 \\
0 \\
1
\end{array}\right|\right\} \quad\left\{v_{1}, v_{2}, v_{2}\right)
$$

set is automatic. moreover, i neorem o will de a key result for work in tater chapters.

THEOREM 8

$n\left[\begin{array}{lllll} & & p & & \\ * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & *\end{array}\right]$
If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.

Solve $A x=7$

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 3 \\
1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & 3 \\
0 & 0 & -2
\end{array}\right] \sim
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=5 \text { (free) } \\
x_{3}=0 \\
x=\left[\begin{array}{l}
0 \\
5 \\
0
\end{array}\right]=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
A\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}+1\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+0\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
\end{array},\right.
\end{aligned}
$$

$$
\sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\delta=1
$$

$$
\dot{X}^{2}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Ex.
In Exercises 11-14, find the values) of h for which the vectors are linearly dependent. Justify each answer.
(11.) $\left[\begin{array}{r}1 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{r}3 \\ -5 \\ 7\end{array}\right],\left[\begin{array}{r}-1 \\ 5 \\ h\end{array}\right]$
\uparrow
you do
12. $\left[\begin{array}{r}2 \\ -4 \\ 1\end{array}\right],\left[\begin{array}{r}-6 \\ 7 \\ -3\end{array}\right],\left[\begin{array}{l}8 \\ h \\ 4\end{array}\right]$

Q H_{2}

$$
\left[\begin{array}{ccc}
2 & -6 & 8 \\
-4 & 7 & h \\
1 & -3 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -3 & 4 \\
-4 & 7 & h \\
2 & -6 & 8
\end{array}\right] \sim 4 h_{1}+2 e_{1}+\left[\begin{array}{ccc}
1 & -3 & 4 \\
0 & -5 & 1 b+h \\
0 & 0 & 0
\end{array}\right]
$$

MATLAB Explomadin \#3.

1.7 EXERCISES

In Exercises 1-4, determine if the vectors are linearly independent. Justify each answer.

1. $\left[\begin{array}{l}5 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}7 \\ 2 \\ -6\end{array}\right],\left[\begin{array}{r}9 \\ 4 \\ -8\end{array}\right]$
2. $\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{r}0 \\ 5 \\ -8\end{array}\right],\left[\begin{array}{r}-3 \\ 4 \\ 1\end{array}\right]$
3. $\left[\begin{array}{r}1 \\ -3\end{array}\right],\left[\begin{array}{r}-3 \\ 9\end{array}\right]$
4. $\left[\begin{array}{r}-1 \\ 4\end{array}\right],\left[\begin{array}{l}-2 \\ -8\end{array}\right]$

In Exercises 5-8, determine if the columns of the matrix form a linearly independent set. Justify each answer.
5. $\left[\begin{array}{rrr}0 & -8 & 5 \\ 3 & -7 & 4 \\ -1 & 5 & -4 \\ 1 & -3 & 2\end{array}\right]$
6. $\left[\begin{array}{rrr}-4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6\end{array}\right]$
7. $\left[\begin{array}{rrrr}1 & 4 & -3 & 0 \\ -2 & -7 & 5 & 1 \\ -4 & -5 & 7 & 5\end{array}\right]$
8. $\left[\begin{array}{rrrr}1 & -3 & 3 & -2 \\ -3 & 7 & -1 & 2 \\ 0 & 1 & -4 & 3\end{array}\right]$

In Exercises 9 and 10, (a) for what values of h is \mathbf{v}_{3} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, and (b) for what values of h is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly dependent? Justify each answer.

62 CHAPTER 1 Linear Equations in Linear Algebra
9. $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -3 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 9 \\ -6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}5 \\ -7 \\ h\end{array}\right]$
10. $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -5 \\ -3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 10 \\ 6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}2 \\ -9 \\ h\end{array}\right]$

In Exercises 11-14, find the value(s) of h for which the vectors are linearly dependent. Justify each answer.
11. $\left[\begin{array}{r}1 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{r}3 \\ -5 \\ 7\end{array}\right],\left[\begin{array}{r}-1 \\ 5 \\ h\end{array}\right]$
12. $\left[\begin{array}{r}2 \\ -4 \\ 1\end{array}\right],\left[\begin{array}{r}-6 \\ 7 \\ -3\end{array}\right],\left[\begin{array}{l}8 \\ h \\ 4\end{array}\right]$
13. $\left[\begin{array}{r}1 \\ 5 \\ -3\end{array}\right],\left[\begin{array}{r}-2 \\ -9 \\ 6\end{array}\right],\left[\begin{array}{r}3 \\ h \\ -9\end{array}\right]$
14. $\left[\begin{array}{r}1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{r}-5 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ h\end{array}\right]$

Determine by inspection whether the vectors in Exercises 15-20 are linearly independent. Justify each answer.
15. $\left[\begin{array}{l}5 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{r}-1 \\ 7\end{array}\right]$
16. $\left[\begin{array}{r}4 \\ -2 \\ 6\end{array}\right],\left[\begin{array}{r}6 \\ -3 \\ 9\end{array}\right]$
17. $\left[\begin{array}{r}3 \\ 5 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-6 \\ 5 \\ 4\end{array}\right]$
18. $\left[\begin{array}{l}4 \\ 4\end{array}\right],\left[\begin{array}{r}-1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}8 \\ 1\end{array}\right]$
19. $\left[\begin{array}{r}-8 \\ 12 \\ -4\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ -1\end{array}\right]$
20. $\left[\begin{array}{r}1 \\ 4 \\ -7\end{array}\right],\left[\begin{array}{r}-2 \\ 5 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
24. A is a 2×2 matrix with linearly dependent columns.
25. A is a 4×2 matrix, $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$, and \mathbf{a}_{2} is not a multiple of \mathbf{a}_{1}.
26. A is a 4×3 matrix, $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$, such that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is linearly independent and \mathbf{a}_{3} is not in Span $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.
27. How many pivot columns must a 7×5 matrix have if its columns are linearly independent? Why?
28. How many pivot columns must a 5×7 matrix have if its columns span \mathbb{R}^{5} ? Why?
29. Construct 3×2 matrices A and B such that $A \mathbf{x}=0$ has only the trivial solution and $B \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
30. a. Fill in the blank in the following statement: "If A is an $m \times n$ matrix, then the columns of A are linearly independent if and only if A has \qquad pivot columns."
b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row operations. [Hint: Write $A \mathbf{x}=\mathbf{0}$ as a vector equation.]
31. Given $A=\left[\begin{array}{rrr}2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1\end{array}\right]$, observe that the third column is the sum of the first two columns. Find a nontrivial solution of $A \mathbf{x}=\mathbf{0}$.
32. Given $A=\left[\begin{array}{rrr}4 & 1 & 6 \\ -7 & 5 & 3 \\ 9 & -3 & 3\end{array}\right]$, observe that the first column

In Exercises 21 and 22, mark each statement True or False. Justify each answer on the basis of a careful reading of the text.
21. a. The columns of a matrix A are linearly independent if the equation $A \mathbf{x}=\mathbf{0}$ has the trivial solution.
b. If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
c. The columns of any 4×5 matrix are linearly dependent.
d. If \mathbf{x} and \mathbf{y} are linearly independent, and if $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent, then \mathbf{z} is in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.
22. a. Two vectors are linearly dependent if and only if they lie on a line through the origin.
b. If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
c. If \mathbf{x} and \mathbf{y} are linearly independent, and if \mathbf{z} is in Span $\{\mathbf{x}, \mathbf{y}\}$, then $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent.
d. If a set in \mathbb{R}^{n} is linearly dependent, then the set contains more vectors than there are entries in each vector.

In Exercises 23-26, describe the possible echelon forms of the matrix. Use the notation of Example 1 in Section 1.2.
23. A is a 3×3 matrix with linearly independent columns.
plus twice the second column equals the third column. Find a nontrivial solution of $A \mathbf{x}=\mathbf{0}$.

Each statement in Exercises 33-38 is either true (in all cases) or false (for at least one example). If false, construct a specific example to show that the statement is not always true. Such an example is called a counterexample to the statement. If a statement is true, give a justification. (One specific example cannot explain why a statement is always true. You will have to do more work here than in Exercises 21 and 22.)
33. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and $\mathbf{v}_{3}=2 \mathbf{v}_{1}+\mathbf{v}_{2}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly dependent.
34. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and $\mathbf{v}_{3}=\mathbf{0}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly dependent.
35. If \mathbf{v}_{1} and \mathbf{v}_{2} are in \mathbb{R}^{4} and \mathbf{v}_{2} is not a scalar multiple of \mathbf{v}_{1}, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.
36. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and \mathbf{v}_{3} is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent.
37. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is also linearly dependent.
38. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are linearly independent vectors in \mathbb{R}^{4}, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is also linearly independent. [Hint: Think about $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}+0 \cdot \mathbf{v}_{4}=\mathbf{0}$.]

1.8 : An Introduction to Linear Transforms

Section 1.8 : An Introduction to Linear Transforms

Chapter 1 : Linear Equations
Math 1554 Linear Algebra

Topics
We will cover these topics in this section.

1. The definition of a linear transformation.
2. The interpretation of matrix multiplication as a linear transformation.

Objectives

For the topics covered in this section, students are expected to be able to do the following

1. Construct and interpret linear transformations in \mathbb{R}^{n} (for example, interpret a linear transform as a projection, or as a shear).
2. Characterize linear transforms using the concepts of

- existence and uniqueness
- domain, co-domain and range

Week Dates	Lecture	Studio	Lecture	Studio	Lecture	
1	$1 / 8-1 / 12$	1.1	WS1.1	1.2	WS1.2	1.3
2	$1 / 15-1 / 19$	Break	WS1.3	1.4	W51.4	1.5
3	$1 / 22-1 / 26$	1.7	WS1.5.1.7	1.8	WS1.8	1.9
4	$1 / 29-2 / 2$	1.9 .2 .1	WS1.9.2.1	Exam 1. Review	Cancelled	2.2

Terminology \downarrow a definitions

From Matrices to Functions
Let A be an man n matrix. We define a function

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime \prime}, \quad T(\vec{d})=A d
$$

This is called a matrix transformation.

- The domain of T is R^{2}.
- The co-domain or target of T is R^{-}.
- The vector $T(\eta)$ is the image of I under T
- The set of all possible images $T(n)$ is the range.

This gives us another interpretation of $A \bar{Z}=\mathcal{E}$

- set of equations
+ matrix equation
- matrix equation
- lines tranafomation equation

Functions from Calculus
Mary of the functions we know have domain and codomaln R. We can express the rule that defines the function sin this way:

$$
\begin{aligned}
& f: \mathrm{R} \rightarrow \mathrm{R} \quad f(x)=\sin (x) \\
& \text { think of a finctim in terms of it }
\end{aligned}
$$

In calculus we often think of a function is terms of its graph, moose horisontal axis is the domain, and the vertical wis is the codomain.

This is ak when the domain and codomain are R. It's hard to do when the domain is R^{3} and the codomain is \mathbb{R}^{3}. We would need five dimensions to draw that graph.

Exam 1 in ore wee from today
(C) 6:30 pm rooms fitted on Cancer homepay.

$$
T(\bar{x})=A x=\vec{b}
$$

Example $1 T=\mathbb{R}^{2} \rightarrow \mathbb{R}^{3} T(\vec{b})=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}7 \\ 5 \\ 7\end{array}\right] \stackrel{?}{=}$ Undefined - \quad Linear Transformations A function $T: \mathbf{R}^{n} \rightarrow \mathbb{R}^{-\prime}$ is linear if

- $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u}, \vec{v} in \mathbb{R}^{n}.
- $T(c \bar{d})=c T(\bar{d})$ for all $\vec{d} \in \mathbb{R}^{n}$, and c in \mathbb{R}.

So if T is linear, then

$$
T\left(c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}\right)=c_{1} T\left(\vec{v}_{1}\right)+\cdots+c_{k} T\left(\vec{v}_{k}\right)
$$

This is called the principle of superposition. The idea is that if we know $T\left(\varepsilon_{1}\right), \ldots, T\left(\varepsilon_{n}\right)$, then we know every $T(\bar{v})$.

Fact: Every matrix transformation T_{A} is linear.
c) Give a $\vec{c} \in \mathbb{R}^{3}$ so there is no \vec{v} with $T(\vec{v})=\vec{c} A \vec{X}=\vec{b}$
or: Give a Z that is not in the range of T.
or: Give a Z that is not in the span of the columns of A.

$$
\text { F }\left[\begin{array}{ll|l}
1 & 1 & 7 \\
0 & 1 & 5 \\
1 & 1 & 7
\end{array}\right] \sim\left(\begin{array}{ll|l}
1 & 1 & 7 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right] \sim\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right)
$$

domain of T is \mathbb{R}^{2}
codomain of T is \mathbb{R}^{3}

$$
\left\{\begin{array}{ll}
c_{1}=2 \\
c_{2}=5
\end{array} \quad \vec{x}=\binom{2}{5}\right.
$$

$\left[\begin{array}{l}7 \\ 4 \\ 7\end{array}\right]$ is the mage of $\left[\begin{array}{l}3 \\ 4\end{array}\right]$.

$$
\left[\begin{array}{ll|l}
1 & 1 & 7 \\
0 & 1 & 5 \\
1 & 1 & 6
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 1 & 7 \\
0 & 1 & 5 \\
0 & 0 & -1
\end{array}\right]
$$

Example 2

Suppose T is the linear transformation $T(\vec{x})=A \vec{x}$. Give a short geometric jiterpretation of what $T(\vec{x})$ does to vectors in \mathbb{R}^{2}.

1) $\left.A=\begin{array}{cc}=1 & 1 \\ =1 & 0\end{array}\right]$

$$
T(\dot{x})=A^{\prime} \quad T=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

Example 3
What does T_{A} do to vectors in \mathbb{R}^{3} ?
a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
2) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
b) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
3) $A=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$ for $k \in \mathbb{R}$

sues $\quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right)\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array} \left\lvert\,\left(\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\left.\begin{array}{l}
1 \\
0
\end{array} \right\rvert\,\right.\right.\right. \\
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{1}{0}=\binom{1}{0}\right. \\
& T\left(\left.\left[\begin{array}{r}
-1 \\
c
\end{array}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \right\rvert\, \begin{array}{c}
-1 \\
2
\end{array}\right]=\binom{-1}{0}
\end{aligned}
$$

$$
\begin{aligned}
T(\vec{x})= & A x \\
& \left.T\binom{1}{1}=\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right)\binom{1}{1}=\left\lvert\, \begin{array}{l}
k \\
k
\end{array}\right.\right)=h\binom{1}{1} \\
& T\left(\binom{1}{0}\right)=\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right)\left|\begin{array}{l}
1 \\
0
\end{array}\right|=\left[\begin{array}{l}
k \\
0
\end{array}\right)=R\binom{1}{0} \\
& T\left(\binom{-1}{2}\right)=\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}| | \begin{array}{c}
-1 \\
2
\end{array}\right)=\binom{-k}{2 k}=R\left(\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

new vector is just
h* old vector/

Example 3
What does T_{A} do to vectors in \mathbb{R}^{3} ?
a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(a) $T\left(\left(\begin{array}{l}a \\ b \\ c\end{array}\right]\right)=\left[\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & p\end{array}\left|\left[\begin{array}{l}a \\ b \\ b\end{array}\right]=a\right| \begin{array}{c}1 \\ b\end{array}|+b| \begin{array}{l}0 \\ 0\end{array}|+c| \begin{array}{l}0 \\ 0\end{array} \right\rvert\,=\left(\left.\begin{array}{l}a \\ b \\ 0\end{array} \right\rvert\,\right.\right.$

$$
\text { b) } A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

projection onto $x_{1} x_{2}$-plane
(b)

reflection across x, 43 -plane

Example 4
A linear transformation $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ satisfies

$$
A=\left[\begin{array}{lll}
* & * \\
* & * \\
* & *
\end{array}\right]
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
e & d \\
e & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right)=\left[\begin{array}{l}
a \\
a \\
e
\end{array}\right] \\
& \left(\begin{array}{lll}
a & b \\
e & b \\
e & f
\end{array}\left|\begin{array}{l}
0 \\
0
\end{array}\right|=\left\lvert\, \begin{array}{l}
b \\
b \\
j
\end{array}\right.\right) \\
& \begin{array}{l}
A=\left[\begin{array}{cc}
5 & -3 \\
-7 & 8 \\
2 & 0 \\
p & i
\end{array}\right] \\
T(101) T\binom{1}{1}
\end{array} \\
& T\left(\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\right)=c_{1} T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+C_{2} T\left(\left(\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& \text { * } T(c \vec{x})=c T(\vec{x}) \\
& f(x)=x^{3}+2 x-1 \\
& +T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \\
& f(2)=8+4-1=11 \\
& f(6) \neq 3.11 \\
& T\left(\left[\begin{array}{l}
4 \\
5
\end{array}\right]\right)=T\left(4\left[\begin{array}{l}
1 \\
0
\end{array}\right)+5\left[\begin{array}{l}
0 \\
1
\end{array}\right) T\left(\left[\begin{array}{l}
4 \\
5
\end{array}\right)=\left[\begin{array}{c}
5 \\
12 \\
8
\end{array}\right]\right.\right. \\
& \left.=4 T((j)]+5 T\left(\left[\begin{array}{l}
0
\end{array}\right)=4\left(\begin{array}{c}
5 \\
7 \\
2
\end{array}\right)+5\right) \begin{array}{c}
-3 \\
8
\end{array}\right)
\end{aligned}
$$

1.8 EXERCISES

1. Let $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, and define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$.

Find the images under T of $\mathbf{u}=\left[\begin{array}{r}1 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$.
2. Let $A=\left[\begin{array}{rrr}.5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5\end{array}\right], \mathbf{u}=\left[\begin{array}{r}1 \\ 0 \\ -4\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.

Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.
In Exercises 3-6, with T defined by $T(\mathbf{x})=A \mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b}, and determine whether \mathbf{x} is unique.
3. $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-1 \\ 7 \\ -3\end{array}\right]$
4. $A=\left[\begin{array}{rrr}1 & -3 & 2 \\ 0 & 1 & -4 \\ 3 & -5 & -9\end{array}\right], \mathbf{b}=\left[\begin{array}{r}6 \\ -7 \\ -9\end{array}\right]$
5. $A=\left[\begin{array}{rrr}1 & -5 & -7 \\ -3 & 7 & 5\end{array}\right], \mathbf{b}=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$
6. $A=\left[\begin{array}{rrr}1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4\end{array}\right], \mathbf{b}=\left[\begin{array}{r}1 \\ 9 \\ 3 \\ -6\end{array}\right]$
7. Let A be a 6×5 matrix. What must a and b be in order to define $T: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b}$ by $T(\mathbf{x})=A \mathbf{x}$?
8. How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^{4} into \mathbb{R}^{5} by the rule $T(\mathbf{x})=A \mathbf{x}$?

For Exercises 9 and 10, find all \mathbf{x} in \mathbb{R}^{4} that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A \mathbf{x}$ for the given matrix A.
9. $A=\left[\begin{array}{rrrr}1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4\end{array}\right]$
10. $A=\left[\begin{array}{rrrr}1 & 3 & 9 & 2 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -2 & 3 & 0 & 5\end{array}\right]$
11. Let $\mathbf{b}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$, and let A be the matrix in Exercise 9. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$? Why or why not?
12. Let $\mathbf{b}=\left[\begin{array}{r}-1 \\ 3 \\ -1 \\ 4\end{array}\right]$, and let A be the matrix in Exercise 10. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$? Why or why not?
In Exercises 13-16, use a rectangular coordinate system to plot $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$, and their images under the given transformation T. (Make a separate and reasonably large sketch for each exercise.) Describe geometrically what T does to each vector \mathbf{x} in \mathbb{R}^{2}.
13. $T(\mathbf{x})=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
14. $T(\mathbf{x})=\left[\begin{array}{rr}.5 & 0 \\ 0 & .5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
15. $T(\mathbf{x})=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
16. $T(\mathbf{x})=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
17. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ into $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and maps $\mathbf{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ into $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$. Use the fact that T is linear to find the images under T of $3 \mathbf{u}, 2 \mathbf{v}$, and $3 \mathbf{u}+2 \mathbf{v}$.
18. The figure shows vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}, along with the images $T(\mathbf{u})$ and $T(\mathbf{v})$ under the action of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Copy this figure carefully, and draw the image $T(\mathbf{w})$ as accurately as possible. [Hint: First, write w as a linear combination of \mathbf{u} and \mathbf{v}.]

19. Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right] . \mathbf{y}_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, and $\mathbf{y}_{2}=\left[\begin{array}{r}-1 \\ 6\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{e}_{1} into \boldsymbol{y}_{1} and maps \mathbf{e}_{2} into \boldsymbol{y}_{2}. Find the images of $\left[\begin{array}{r}5 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
20. Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$, and $\mathbf{v}_{2}=\left[\begin{array}{r}7 \\ -3\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps x into $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}$. Find a matrix A such that $T(\mathbf{x})$ is $A \mathbf{x}$ for each \mathbf{x}.

In Exercises 21 and 22, mark each statement True or False. Justify anh anowar

Make two sketches similar to Figure 6 that illustrate properties (i) and (ii) of a linear transformation.
24. Suppose vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span \mathbb{R}^{n}, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Suppose $T\left(\mathbf{v}_{i}\right)=\mathbf{0}$ for $i=1 \ldots \ldots p$. Show that T is the zero transformation. That is, show that if \mathbf{x} is any vector in \mathbb{R}^{n}, then $T(\mathbf{x})=\mathbf{0}$.
25. Given $\mathbf{v} \neq 0$ and p in \mathbb{R}^{n}, the line through p in the direction of \mathbf{v} has the parametric equation $\mathbf{x}=\mathbf{p}+t \mathbf{v}$. Show that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ maps this line onto another line or onto a single point (a degenerate line).
26. Let \mathbf{u} and \mathbf{v} be linearly independent vectors in \mathbb{R}^{3}, and let P be the plane through \mathbf{u}, \mathbf{v}, and $\mathbf{0}$. The parametric equation of P is $\mathbf{x}=s \mathbf{u}+t \mathbf{v}$ (with s, t in R). Show that a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ maps P onto a plane through $\mathbf{0}$, or onto a line through $\mathbf{0}$, or onto just the origin in \mathbb{R}^{3}. What must be true about $T(\mathbf{u})$ and $T(\mathbf{v})$ in order for the image of the plane P to be a plane?
27. a. Show that the line through vectors \mathbf{p} and \mathbf{q} in $\mathbb{R}^{\text {n }}$ may be written in the parametric form $\mathbf{x}=(1-t) \mathbf{p}+t \mathbf{q}$. (Refer to the figure with Exercises 21 and 22 in Section 1.5.)
b. The line segment from \mathbf{p} to \mathbf{q} is the set of points of the form $(1-t) \mathbf{p}+t \mathbf{q}$ for $0 \leq t \leq 1$ (as shown in the figure below). Show that a linear transformation T maps this line segment onto a line segment or onto a single point.

$$
(t=1) \mathbf{q} \underbrace{(1-t) \mathbf{p}+t \mathbf{q}}_{(t=0) \mathbf{p}^{-}}
$$

In Exercises 21 and 22, mark each statement True or False. Justify each answer.
21. a. A linear transformation is a special type of function.
b. If A is a 3×5 matrix and T is a transformation defined by $T(\mathbf{x})=A \mathbf{x}$, then the domain of T is \mathbb{R}^{3}.
c. If A is an $m \times n$ matrix, then the range of the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is $\mathbb{R}^{\prime \prime \prime}$.
d. Every linear transformation is a matrix transformation.
e. A transformation T is linear if and only if $T\left(c_{1} \mathbf{v}_{1}+\right.$ $\left.c_{2} \mathbf{v}_{2}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)$ for all \mathbf{v}_{1} and \mathbf{v}_{2} in the domain of T and for all scalars c_{1} and c_{2}.
22. a. Every matrix transformation is a linear transformation.
b. The codomain of the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is the set of all linear combinations of the columns of A.
c. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and if \mathbf{c} is in $\mathbb{R}^{\text {m }}$, then a uniqueness question is "Is \mathbf{c} in the range of $T ?^{\prime \prime}$
d. A linear transformation preserves the operations of vector addition and scalar multiplication.
e. The superposition principle is a physical description of a linear transformation.
23. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that reflects each point through the x_{1}-axis. (See Practice Problem 2.)

28. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. It can be shown that the set P of all points in the parallelogram determined by \mathbf{u} and \mathbf{v} has the form $a \mathbf{u}+b \mathbf{v}$, for $0 \leq a \leq 1,0 \leq b \leq 1$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Explain why the image of a point in P under the transformation T lies in the parallelogram determined by $T(\mathbf{u})$ and $T(\mathbf{v})$.
29. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=m x+b$.
a. Show that f is a linear transformation when $b=0$.
b. Find a property of a linear transformation that is violated when $b \neq 0$.
c. Why is f called a linear function?
30. An affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $T(x)=A \mathbf{x}+\mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^{m}. Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in computer graphics.)
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a linearly dependent set in \mathbb{R}^{n}. Explain why the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.
In Exercises 32-36, column vectors are written as rows, such as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, and $T(\mathbf{x})$ is written as $T\left(x_{1}, x_{2}\right)$.
32. Show that the transformation T defined by $T\left(x_{1}, x_{2}\right)=$ $\left(4 x_{1}-2 x_{2}, 3\left|x_{2}\right|\right)$ is not linear.

CHECK OUT the textbook for Math 1553 which was created by Georgia Tech professors for Intro. Linear Algebra
https://textbooks.math.gatech.edu/ila/
There's a really nice section on linear transformations

Transformations

At thas point it is convenient to fix our ideas and terminology regarding functions, which we will call tratuformations in this book. This allows us to systematine our discussion of matrices as functions.

Definition. A transformation from \mathbb{R}^{\prime} to \mathbb{R}^{-}is a rule T that assigss to each vector x in R^{\prime} a vector $T(x)$ in R^{-}

- \mathbf{R}^{*} is called the domain of T
- R^{-}is called the codomain of T
- For x in \mathbb{R}^{*}, the vector $T(x)$ in \mathbb{R}^{-}is the imgge of x under T.
- The set of all images $\left[T(x) \mid x\right.$ in $\left.R^{\prime}\right)$ is the range of T.

The notation $T: \mathbf{R}^{\prime} \longrightarrow \mathbf{R}^{*}$ means ${ }^{*} T$ is a transformation from \mathbf{R}^{n} to \mathbf{R}^{-2}.
It may help to think of T as a "machine" that takes x as an input, and gives you $T(x)$ as the ousput.

Example (A matrix transformation that is neither one-to-one nor onto), a

${ }^{2 x}$
A picture of the matrix transformation T. The vioke plane is the solution ant $T(x)=0$. f you drags x along the viokt plane, the outpot $T(x)=A x$ does tot change. This demonstrates chat $T(x)=0$ hes more cthan one soluriwn is not ane-to-ose. The rangy of T is the violet line on the rigts, this is equarion $A x=b$ becontes isconsitent; tha means $T(x)=b$ has no solutios.
https://textbooks math.gatech.edu/ila/one-to-one-onto.html

Example (Reflection), ^

Let

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

Describe the function $b=A x$ geometrically
Solution
In the equation $A x=b$, the input vector x and the output vector b are both in \mathbf{R}^{2}. First we multiply A by a vector to see what it does:

$$
A\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y} .
$$

Multiplication by A negates the x-coordinate: it reflects over the y-axis.
 $\left[\begin{array}{ll}0.95 & 0.00 \\ 0.00 & 1.00\end{array}\right]\left[\begin{array}{l}2.00 \\ 4.00\end{array}\right]=\left[\begin{array}{l}1.90 \\ 4.00\end{array}\right]$ [Click and drag the vector heads]

httpps://
textbooks math gate ch.edu/ia/matrixtransformations.html

Multiplication by the matrix A reflects over the y-axis. Move the input vector x to see how the output wetor b changes.

Chapter 1: Lees formations Math ESse Linear Agger

$$
\left[\begin{array}{l}
\sin t \\
\sin t \\
\sin \theta
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{0}
\end{array}\right]=\overline{\rho \rho}
$$

Amp ///id compost

Topics
We $=1$
Topics
We will cover these topics in this section
The standard vectors and the standard matrix
Two and there dimensional trandormations is more detail.

1. Onto and one-to one translomations.

Objectives
For the topics co
do the fotoming
${ }_{2}$. Identify and construct linear transformations of a matrix.
2 Characterize linear trasblormations as otto and/ar oneto-one.
3. Solve linear systems represented as linear transoms.
4. Express linear transforms in other forms, watch as as matrix equations
or as vector equations.

Studio

Definition: The Standard Vectors
basis

$$
\begin{aligned}
& \text { Sectors in } \mathbb{R}^{n} \text { are the vector } \vec{c}_{1}, \vec{\varepsilon}_{2}, \ldots, \dot{\epsilon}_{\mathrm{N}} \text {, where: } \\
& \vec{c}_{1}=\left|\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right| \vec{\epsilon}_{2}=\left|\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right| \quad \vec{c}_{n}=\left|\begin{array}{c}
0 \\
0 \\
1
\end{array}\right|
\end{aligned}
$$

A Property of the Standard Vectors
Note: if A is an $m \times n$ matrix with columns $\vec{f}_{1}, i_{2}, \ldots, \dot{E}_{\mathrm{n}}$, then

$$
A c_{i}=E_{2}, \text { for } i=1,2, \ldots, n
$$

So multiplying a matrix by Z_{i} gives column i of A.
Example

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \vec{z}_{2}=\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]
$$

\ldots
mutiplying $A * e i$
extracts the iTh
column of A.

Theorem
Let $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be a linear transformation. Then there is a unique matrix A such that

$$
T(\vec{x})=A \vec{x}, \quad \vec{x} \in \mathbb{R}^{m}
$$

In fact, A is a $m \times n$, and its $j^{\text {th }}$ column is the vector $T\left(\vec{c}_{j}\right)$.

$$
A=\left[\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{c}_{2}\right) & \cdots & T\left(\vec{e}_{n}\right)
\end{array}\right]
$$

The matrix A is the standard matrix for a linear transformation.
T rotates vectors in \mathbb{R}^{2} counter-clockuise by 90° $\cdots(\vec{x})=A \dot{x}$

Example 1
What is the linear transform $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$T(\vec{x})=\vec{x}$ rotated counterclockwise by angle θ ?

Ex. Find A.

$$
\begin{aligned}
& A\left(e_{1}\right)=\binom{0}{1} .
\end{aligned}
$$

second column of
A is.

$$
T\left(e_{2}\right)=\binom{-1}{0}
$$

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

$$
T\left(\left[\begin{array}{l}
4 \\
1
\end{array}\right] \stackrel{?}{=}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]\right.
$$

The Standard Matrix

Theorem
Let $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be a linear transformation. Then there is a unique matrix A such that

$$
T(\vec{x})=A \vec{x}, \quad \vec{x} \in \mathbb{R}^{m}
$$

In fact, A is a $m \times n$, and its $j^{\text {th }}$ column is the vector $T\left(\vec{c}_{j}\right)$. $A=\left[\begin{array}{llll}T\left(\vec{\epsilon}_{1}\right) & T\left(\vec{\epsilon}_{3}\right) & \cdots & T\left(\vec{\epsilon}_{n}\right)\end{array}\right]$

Rotations
Example 1
What is the linear transform $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$T(\vec{x})=\vec{x}$ rotated counterclockwise by angle θ ?
how about arbitron θ ?
The matrix A is the standard matrix for a linear transformation.

Q: What wbout clochuise??

$$
\begin{aligned}
& A=\left(\begin{array}{lr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \mathbb{r o t a t i o n ~ b y} \\
& 2=\left(\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right] \\
& B=\left(\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
\end{aligned}
$$

Ex. Let $T(x)=A x$ be the transformation which first reflects vectors in R^{\wedge} 2 across the line $y=0$, and then projects the resulting vector to the y-axis.

Find the standard matrix of A.

To enter

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

in live as text use

$$
\begin{aligned}
& T\left(\vec{e}_{1}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right) \\
& T\left(\vec{e}_{2}\right)=\binom{0}{-1}
\end{aligned}
$$

red visors
we abel.

$$
A=\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]
$$

$$
T(\vec{x})=A_{\vec{x}}=\vec{b}
$$

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for all $\vec{b} \in \mathbb{R}^{m}$ there is a $\vec{x} \in \mathbb{R}^{n}$ so that $T(\vec{x})=\vec{b}$.

Onto is an existence property: for any $\vec{b} \in \mathbb{R}^{m}, A \vec{x}=\vec{b}$ has a solution.
Examples

- A rotation on the plane is an onto linear transformation.
- A projection in the plane is not onto.

Useful Fact
T is onto if and only if its standard matrix has a pivot in every row.
$\Leftrightarrow A$ has a pivot in every Row \Longleftrightarrow RREF of A has no zero rows.

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if for all $\vec{b} \in \mathbb{R}^{m}$ there is at most one (possibly no) $\vec{x} \in \mathbb{R}^{n}$ so that $T(\vec{x})=\vec{b}$.

One-to-one is a uniqueness property, it does not assert existence for all \vec{b}.
Examples

- A rotation on the plane is a one-to-one linear transformation.
- A projection in the plane is not one-to-one.

Useful Facts

- T is one-to-one if and only if the only solution to $T(\vec{x})=0$ is the zero vector, $\vec{x}=\overrightarrow{0}$.
- T is one-to-one if and only if the standard matrix A of T has no free variables.
\Longleftrightarrow A has a pivot in every coup
$\Longleftrightarrow A x=b$ has at most ONE solution.

Standard Matrices in \mathbb{R}^{2}

- There is a long list of geometric transformations of R^{2} in our textbook, as well as on the next few slides (reflections, rotations, contractions and expansions, shears, projections, ...)
- Please familiarize yourself with them: you are expected to memorize them (or be able to derive them)

The Standard Matrix

$$
\begin{aligned}
& \text { Theorem } T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\text {en }} \text { be a linear transformation. Then there } \\
& \text { is a unique matrix } A \text { such that } \\
& T(\vec{x})=A \vec{F}, \quad \vec{r} \in \mathbb{R}^{m} \\
& \text { In fact, } A \text { is a } m \times n \text {, and its } j^{\text {th }} \text { column is the vector } T\left(\epsilon_{j}\right) \text {. } \\
& A=\left[\begin{array}{llll}
T\left(\vec{\varepsilon}_{1}\right) & T\left(\tilde{z}_{3}\right) & \cdots & T\left(\tilde{\varepsilon}_{4}\right)
\end{array}\right]
\end{aligned}
$$

The matrix A is the standard matrix for a linear transformation.

Two Dimensional Examples: Reflections

reansformation | image of unit square | standard matrix |
| :--- | :--- |
| reflection through $x_{2}=x_{1}$ | x_{2} |

Two Dimensional Examples: Contractions and Expansions

transformation	image of unit square	standard matrix
Vertical Contraction	x_{2}	
		$\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right),\|k\|<1$

Vertical Expansion

Two Dimensional Examples: Shears

transformation	image of unit square	standard matrix
Vertical Shear(down)	$\left(\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right), k>0$	

Vertical Shear(up)

Two Dimensional Examples: Reflections

transformation	image of unit square	standard matrix
reflection through $x_{1}-$ axis	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	
reflection through $x_{2}-$ axis		

Two Dimensional Examples: Contractions and Expansions

transformation	image of unit square	standard matrix
Horizontal Contraction	z_{2}	
		$\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right) \cdot\|k\|<1$

Horizontal Expansion

$\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right), k>1$

Two Dimensional Examples: Shears

transformation	image of unit square
Horizontal Shear(left)	$x_{2} \mid$

Horizontal Shear(right)

Two Dimensional Examples:
Projections

transformation image of unit square standard matrix

Projection onto the x_{1}-axis

 not

Example

Complete the matrices below by entering numbers into the missing entries so that the properties are satisfied. If it isn't possible to do so, state why.
a) A is a 2×3 standard matrix for a one-to-one linear transform.
$A=\left(\begin{array}{lll}1 & 0 & \\ 0 & & 1\end{array}\right)$
b) B is a 3×2 standard matrix for an onto linear transform.

$$
B=\left(\begin{array}{l}
1 \\
\end{array}\right)
$$

c) C is a 3×3 standard matrix of a linear transform that is one-to-one and onto.

$$
C=\left(\begin{array}{lll}
1 & 1 & 1 \\
& & \\
& &
\end{array}\right)
$$

Theorem
For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these are equivalent statements.

1. T is onto.
2. The matrix A has columns which span \mathbb{R}^{m}.
3. The matrix A has m pivotal columns.
Theorem
For a linear transformation $T: \mathrm{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard
matrix A these are equivalent statements.
4. T is one-to-one.
5. The unique solution to $T(\vec{x})=\overrightarrow{0}$ is the trivial one.
6. The matrix A linearly independent columns.
7. Each column of A is pivotal.

Example 2

Define a linear transformation by
$T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Is this one-to-one? is it onto?

Additional Example (if time permits)

Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 8 & 1 \\
2 & -1 & 3 \\
0 & 0 & 5
\end{array}\right]
$$

Is the transformation onto? Is it one-to-one?

1.9 EXERCISES

In Exercises $1-10$, assume that T is a linear transformation. Find the standard matrix of T.

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1)$ and $T\left(\mathbf{e}_{2}\right)=(-5,2,0,0)$. where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.
2. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad T\left(\mathbf{e}_{1}\right)=(1,3), \quad T\left(\mathbf{e}_{2}\right)=(4,-7), \quad$ and $T\left(\mathbf{e}_{3}\right)=(-5,4)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are the columns of the 3×3 identity matrix.
3. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $3 \pi / 2$ radians (counterclockwise).
4. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $-\pi / 4$ radians (clockwise). [Hint: $T\left(\mathbf{e}_{1}\right)=(1 / \sqrt{2},-1 / \sqrt{2})$]
5. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a vertical shear transformation that maps \mathbf{e}_{1} into $\mathbf{e}_{1}-2 \mathbf{e}_{2}$ but leaves the vector \mathbf{e}_{2} unchanged.
6. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a horizontal shear transformation that leaves \mathbf{e}_{1} unchanged and maps \mathbf{e}_{2} into $\mathbf{e}_{2}+3 \mathbf{e}_{1}$.
7. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first rotates points through $-3 \pi / 4$ radian (clockwise) and then reflects points through the horizontal x_{1}-axis. $\left[\right.$ Hint: $T\left(\mathbf{e}_{1}\right)=(-1 / \sqrt{2}, 1 / \sqrt{2})$.]
8. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the horizontal x_{1} axis and then reflects points through the line $x_{2}=x_{1}$.
9. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first performs a horizontal shear that transforms \mathbf{e}_{2} into $\mathbf{e}_{2}-2 \mathbf{e}_{1}$ (leaving \mathbf{e}_{1} unchanged) and then reflects points through the line $x_{2}=-x_{1}$.
10. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the vertical x_{2}-axis and then rotates points $\pi / 2$ radians.
11. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the x_{1}-axis and then reflects points through the x_{2} axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
12. Show that the transformation in Exercise 8 is merely a rotation about the origin. What is the angle of the rotation?
13. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that $T\left(\mathbf{e}_{1}\right)$ and $T\left(\mathbf{e}_{2}\right)$ are the vectors shown in the figure. Using the figure, sketch the vector $T(2,1)$.

14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$, where \mathbf{a}_{1} and \mathbf{a}_{2} are shown in the figure. Using the figure, draw the image of $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ under the
transformation T.

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.
15. $\left[\begin{array}{lll}? & ? & ? \\ ? & ? & ? \\ ? & ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}3 x_{1}-2 x_{3} \\ 4 x_{1} \\ x_{1}-x_{2}+x_{3}\end{array}\right]$
16. $\left[\begin{array}{ll}? & ? \\ ? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}-x_{2} \\ -2 x_{1}+x_{2} \\ x_{1}\end{array}\right]$

In Exercises 17-20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_{1}, x_{2}, \ldots are not vectors but are entries in vectors.
17. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)$
18. $T\left(x_{1}, x_{2}\right)=\left(2 x_{2}-3 x_{1}, x_{1}-4 x_{2}, 0, x_{2}\right)$
19. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)$
20. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{1}+3 x_{3}-4 x_{4} \quad\left(T: \mathbb{R}^{4} \rightarrow \mathbb{R}\right)$
21. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 4 x_{1}+5 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=$ (3,8).
22. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2},-x_{1}+3 x_{2}, 3 x_{1}-2 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=(-1,4,9)$.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime \prime \prime}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
b. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors about the origin through an angle φ, then T is a linear transformation.
c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every vector \mathbf{x} in \mathbb{R}^{n} maps onto some vector in \mathbb{R}^{m}.
e. If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot be one-to-one.
24. a. Not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
b. The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images of the columns of the $n \times n$ identity matrix.
c. The standard matrix of a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$, where a and d are ± 1.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps onto a unique vector in \mathbb{R}^{m}.
c. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ cannot map \mathbb{R}^{2} onto \mathbb{R}^{3}.
In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
25. The transformation in Exercise 17
26. The transformation in Exercise 2
27. The transformation in Exercise 19
28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T. Use the notation of Example 1 in Section 1.2.
29. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one.
30. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto.
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime \prime}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T is one-to-one if and only if A has _pivot columns." Explain why the statement is true. [Hint: Look in the exercises for Section 1.7.]
32. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T maps \mathbb{R}^{n} onto $\mathbb{R}^{\text {" }}$ if and only if A has pivot columns." Find some theorems that explain why the statement is true.
33. Verify the uniqueness of A in Theorem 10. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\mathbf{x})=B \mathbf{x}$ for some
$m \times n$ matrix B. Show that if A is the standard matrix for T, then $A=B$. [Hint: Show that A and B have the same columns.]
34. Why is the question "Is the linear transformation T onto?" an existence question?
35. If a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}. can you give a relation between m and n ? If T is one-to-one, what can you say about m and n ?
36. Let $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear transformations. Show that the mapping $\mathrm{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbf{R}^{p} to $\left.\mathbf{R}^{\prime \prime}\right)$. [Hint: Compute $T(S(c \mathbf{u}+d \mathbf{v})$) for \mathbf{u}, \mathbf{v} in \mathbb{R}^{\prime} and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]
[M] In Exercises 37-40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40 , decide if T maps \mathbb{R}^{5} onto R^{5}. Justify your answers.
37. $\left[\begin{array}{rrrr}-5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4\end{array}\right]$
38. $\left[\begin{array}{rrrr}7 & 5 & 4 & -9 \\ 10 & 6 & 16 & -4 \\ 12 & 8 & 12 & 7 \\ -8 & -6 & -2 & 5\end{array}\right]$
39. $\left[\begin{array}{rrrrr}4 & -7 & 3 & 7 & 5 \\ 6 & -8 & 5 & 12 & -8 \\ -7 & 10 & -8 & -9 & 14 \\ 3 & -5 & 4 & 2 & -6 \\ -5 & 6 & -6 & -7 & 3\end{array}\right]$
40. $\left[\begin{array}{rrrrr}9 & 13 & 5 & 6 & -1 \\ 14 & 15 & -7 & -6 & 4 \\ -8 & -9 & 12 & -5 & -9 \\ -5 & -6 & -8 & 9 & 8 \\ 13 & 14 & 15 & 2 & 11\end{array}\right]$

