Standard Matrices in \mathbb{R}^{2}

- There is a long list of geometric transformations of R^{2} in our textbook, as well as on the next few slides (reflections, rotations, contractions and expansions, shears, projections, ...)
- Please familiarize yourself with them: you are expected to memorize them (or be able to derive them)

The Standard Matrix

The matrix A is the standard matrix for a linear transformation.

Two Dimensional Examples: Reflections

Two Dimensional Examples: Contractions and Expansions

Vertical Expansion

Two Dimensional Examples: Shears

transformation	image of unit square	standard matrix
Vertical Shear(down)	x_{2}	

Vertical Shear(up)

Two Dimensional Examples: Reflections

transformation	image of unit square	standard matrix
reflection through $x_{1}-$ axis	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	
reflection through $x_{2}-$ axis		

Two Dimensional Examples: Contractions and Expansions

Horizontal Expansion

$\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right), k>1$

Two Dimensional Examples: Shears

transformation	image of unit square
Horizontal Shear(left)	$x_{2} \mid$

Horizontal Shear(right)

Two Dimensional Examples:
Projections
transformation image of unit square standard matrix

Projection onto the x_{1}-axis

For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A these -are equivalent statements.
2. The unique solution to $T(\tilde{x})=\overrightarrow{0}$ is the trivial one.
3. The matrix A linearly independent columns.
4. Each column of A is pivotal.
c) C is a 3×3 standard matrix of a linear transform that is one-to-one and onto.

$$
\checkmark C=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\left|,\left|\begin{array}{l}
1 \\
1
\end{array}\right|,\right| \begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}=\mathbb{R}^{3}
$$

© range of

$$
T(x)=C^{2}
$$

$$
\begin{aligned}
& \text { Example } 2 \\
& \text { Define a linear transformation by } \\
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left(\begin{array}{c}
3 x_{1}+x_{2} \\
5 x_{1}+7 x_{2} \\
x_{1}+3 x_{2}
\end{array}\right) \\
& \text { yes } \\
& \text { Is this one-to-one? Is } \\
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& T(\vec{x})=A \dot{x} \\
& \text { Additional Example (if time permits) } \\
& \text { Let } T \text { be the linear transformation whose standard matrix is } \\
& A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 8 & 1 \\
2 & -1 & 3 \\
0 & 0 & 5
\end{array}\right] \\
& \text { Is the transformation onto? Is it one-to-one? } \\
& A=\left[\begin{array}{ll}
3 & 1 \\
5 & 7 \\
1 & 3
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 3 \\
5 & 7 \\
3 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 3 \\
0 & 6 \\
0 & x
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 3 \\
0 & * \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

1.9 EXERCISES

In Exercises $1-10$, assume that T is a linear transformation. Find the standard matrix of T.

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1)$ and $T\left(\mathbf{e}_{2}\right)=(-5,2,0,0)$. where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.
2. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad T\left(\mathbf{e}_{1}\right)=(1,3), \quad T\left(\mathbf{e}_{2}\right)=(4,-7), \quad$ and $T\left(\mathbf{e}_{3}\right)=(-5,4)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are the columns of the 3×3 identity matrix.
3. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $3 \pi / 2$ radians (counterclockwise).
4. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points (about the origin) through $-\pi / 4$ radians (clockwise). [Hint: $T\left(\mathbf{e}_{1}\right)=(1 / \sqrt{2},-1 / \sqrt{2})$]
5. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a vertical shear transformation that maps \mathbf{e}_{1} into $\mathbf{e}_{1}-2 \mathbf{e}_{2}$ but leaves the vector \mathbf{e}_{2} unchanged.
6. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a horizontal shear transformation that leaves \mathbf{e}_{1} unchanged and maps \mathbf{e}_{2} into $\mathbf{e}_{2}+3 \mathbf{e}_{1}$.
7. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first rotates points through $-3 \pi / 4$ radian (clockwise) and then reflects points through the horizontal x_{1}-axis. $\left[\right.$ Hint: $T\left(\mathbf{e}_{1}\right)=(-1 / \sqrt{2}, 1 / \sqrt{2})$.]
8. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the horizontal x_{1} axis and then reflects points through the line $x_{2}=x_{1}$.
9. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first performs a horizontal shear that transforms \mathbf{e}_{2} into $\mathbf{e}_{2}-2 \mathbf{e}_{1}$ (leaving \mathbf{e}_{1} unchanged) and then reflects points through the line $x_{2}=-x_{1}$.
10. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the vertical x_{2}-axis and then rotates points $\pi / 2$ radians.
11. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the x_{1}-axis and then reflects points through the x_{2} axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
12. Show that the transformation in Exercise 8 is merely a rotation about the origin. What is the angle of the rotation?
13. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that $T\left(\mathbf{e}_{1}\right)$ and $T\left(\mathbf{e}_{2}\right)$ are the vectors shown in the figure. Using the figure, sketch the vector $T(2,1)$.

14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$, where \mathbf{a}_{1} and \mathbf{a}_{2} are shown in the figure. Using the figure, draw the image of $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$ under the
transformation T.

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.
15. $\left[\begin{array}{lll}? & ? & ? \\ ? & ? & ? \\ ? & ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}3 x_{1}-2 x_{3} \\ 4 x_{1} \\ x_{1}-x_{2}+x_{3}\end{array}\right]$
16. $\left[\begin{array}{ll}? & ? \\ ? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}-x_{2} \\ -2 x_{1}+x_{2} \\ x_{1}\end{array}\right]$

In Exercises 17-20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_{1}, x_{2}, \ldots are not vectors but are entries in vectors.
17. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}\right)$
18. $T\left(x_{1}, x_{2}\right)=\left(2 x_{2}-3 x_{1}, x_{1}-4 x_{2}, 0, x_{2}\right)$
19. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)$
20. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{1}+3 x_{3}-4 x_{4} \quad\left(T: \mathbb{R}^{4} \rightarrow \mathbb{R}\right)$
21. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 4 x_{1}+5 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=$ (3,8).
22. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2},-x_{1}+3 x_{2}, 3 x_{1}-2 x_{2}\right)$. Find \mathbf{x} such that $T(\mathbf{x})=(-1,4,9)$.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime \prime \prime}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
b. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors about the origin through an angle φ, then T is a linear transformation.
c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if every vector \mathbf{x} in \mathbb{R}^{n} maps onto some vector in \mathbb{R}^{m}.
e. If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot be one-to-one.
24. a. Not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
b. The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images of the columns of the $n \times n$ identity matrix.

NOTES FRON In-Class Midterm 1 FALL 2023

1. Consider the matrix A and vectors \vec{b}_{1} and \vec{b}_{2}.

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right), \quad \vec{b}_{1}=\binom{-2}{-4}, \quad \vec{b}_{2}=\binom{-1}{2}
$$

If possible, on the grids below, draw
(i) the two vectors and the span of the columns of A,
(ii) the solution set of $A \vec{x}=\vec{b}_{1}$.
(iii) the solution set of $A \vec{x}=\vec{b}_{2}$.
(i) \vec{b}_{1}, \vec{b}_{2}, column span

ii) solution set $A x=\vec{b}_{1}$

iii) solution set $A x=\vec{b}_{2}$

$$
\left[\begin{array}{ll|l}
1 & 4 & -2 \\
2 & 8 & -4
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 4^{\prime} & -2 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array} { c }
{ x _ { 1 } + 4 5 = - 2 } \\
{ x _ { 2 } = 5 }
\end{array} \left\{\begin{array}{l}
x_{1}=-2-45 \\
x_{2}=5
\end{array}\right.\right.
$$

$$
\text { Is }\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \text { a sol to }
$$

Chutes.

$$
x=\left[\begin{array}{c}
-2 \\
6
\end{array}\right]-\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
$$

2. Indicate true if the statement is true, otherwise, indicate false. For the statements that are false, give a counterexample.

a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, then the columns of A cannot span \mathbb{R}^{M}.

3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write not possible.
(a) A linear system that is homogeneous and has no solutions.
could $A \bar{x}=0$ have no solutions? No.

$$
\bar{x}=\overrightarrow{0} \text { delays a son }
$$

(b) and ard matrix A associzted to a linear transform, T. Matrix A is in RREF, and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one

and vector b.
(c) A 3×7 matrix A, in RREF, with exactly 2 pivot columns such that $A \vec{x}=\vec{b}$ has exactly 5 free variables.

$$
A=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & \quad & =\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right.
\end{array}\right)
$$

4. Consider the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 7 & 0 & -5 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \vec{b}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

(a) Express the augmented matrix $(A \mid \vec{b})$ in RREF.
(b) Write the set of solutions to $A \vec{x}=\vec{b}$ in parametric vector form. Yours ansy/er must be expressed as a vector equation.

$Q_{S O}:$ codamain, cange miga.
Q2: onto vs. 1-1.
20\% $2_{3} \quad A C=B C A \neq($ nou-zios $)$
$Q_{4: \text { clockwise rotatounh } O: n \mathbb{R}^{2}}$

$$
A=\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$$
T(\vec{x})=A \times \sim
$$

rotate CCW the θ.

$$
\begin{aligned}
& B=\left[\begin{array}{l}
\cos (-\theta)-\sin (-\theta) \\
\sin (-\theta) \\
\cos (-\theta)
\end{array}\right] \begin{array}{r}
(\vec{x})=B x \\
\text { sotate } C \operatorname{CN} \\
\\
b y \theta
\end{array} \\
& =\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& \nrightarrow
\end{aligned}
$$

Qi: codamain, cange mige
Q_{2} : onto vs. 1-1.
$20 \div-($ nou-zer $)$
Qz: $\quad A C=B^{C} \quad A \neq F^{2}$ (psssimp)
$Q_{4}:$ clockwise rotation'm $0: n \mathbb{R}^{2}$

$$
\left.A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] \quad b=\begin{array}{l}
\\
3 \\
3
\end{array}\right]
$$

Timace forip
$Q_{1}=1 s b$ in the sange of.

$$
\operatorname{H}_{\text {sumis }}(\mathbb{R}\}
$$

range is spans\{ $\left\{17,1, \frac{2}{2}\right\}$

$$
x=(1,1,50
$$

$$
\begin{aligned}
A\left(\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
& x_{1}\binom{1}{1}+x_{2}\binom{2}{2}=\binom{3}{3}\left[\begin{array}{l}
0 \\
3(2)
\end{array}\right)
\end{aligned}
$$

$$
A C=B C
$$

but $A \neq B$.
c different.

$$
\begin{array}{r}
{\left[\begin{array}{ll}
3 & 4 \\
7 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 10 \\
7 & 0
\end{array} \left\lvert\,\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right.\right.} \\
=\left[\begin{array}{ll}
3 & 3 \\
7 & 7
\end{array}\right]=\left[\begin{array}{l}
3 \\
77
\end{array}\right]
\end{array}
$$

a same?
c. The standard matrix of a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$, where a and d are ± 1.
d. A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps onto a unique vector in \mathbb{R}^{m}.
c. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ cannot map \mathbb{R}^{2} onto \mathbb{R}^{3}.
In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
25. The transformation in Exercise 17
26. The transformation in Exercise 2
27. The transformation in Exercise 19
28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T. Use the notation of Example 1 in Section 1.2.
29. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one.
30. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto.
31. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime \prime}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T is one-to-one if and only if A has _pivot columns." Explain why the statement is true. [Hint: Look in the exercises for Section 1.7.]
32. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with A its standard matrix. Complete the following statement to make it true: " T maps \mathbb{R}^{n} onto $\mathbb{R}^{\text {" }}$ if and only if A has pivot columns." Find some theorems that explain why the statement is true.
33. Verify the uniqueness of A in Theorem 10. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\mathbf{x})=B \mathbf{x}$ for some
$m \times n$ matrix B. Show that if A is the standard matrix for T, then $A=B$. [Hint: Show that A and B have the same columns.]
34. Why is the question "Is the linear transformation T onto?" an existence question?
35. If a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}. can you give a relation between m and n ? If T is one-to-one, what can you say about m and n ?
36. Let $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear transformations. Show that the mapping $\mathrm{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbf{R}^{p} to $\left.\mathbf{R}^{\prime \prime}\right)$. [Hint: Compute $T(S(c \mathbf{u}+d \mathbf{v})$) for \mathbf{u}, \mathbf{v} in \mathbb{R}^{\prime} and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]
[M] In Exercises 37-40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40 , decide if T maps \mathbb{R}^{5} onto R^{5}. Justify your answers.
37. $\left[\begin{array}{rrrr}-5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4\end{array}\right]$
38. $\left[\begin{array}{rrrr}7 & 5 & 4 & -9 \\ 10 & 6 & 16 & -4 \\ 12 & 8 & 12 & 7 \\ -8 & -6 & -2 & 5\end{array}\right]$
39. $\left[\begin{array}{rrrrr}4 & -7 & 3 & 7 & 5 \\ 6 & -8 & 5 & 12 & -8 \\ -7 & 10 & -8 & -9 & 14 \\ 3 & -5 & 4 & 2 & -6 \\ -5 & 6 & -6 & -7 & 3\end{array}\right]$
40. $\left[\begin{array}{rrrrr}9 & 13 & 5 & 6 & -1 \\ 14 & 15 & -7 & -6 & 4 \\ -8 & -9 & 12 & -5 & -9 \\ -5 & -6 & -8 & 9 & 8 \\ 13 & 14 & 15 & 2 & 11\end{array}\right]$

Topics and Objectives

Section 2.1 : Matrix Operations

Topics
We will cover these topics in this section.

1. Identity and zero matrices
2. Matrix algebra (sums and products, scalar multiplies, matrix powers)
3. Transpose of a matrix

Objectives
For the topics covered in this section, students are expected to be able to do the following.

1. Apply matrix algebra, the matrix transpose, and the zero and identity matrices, to solve and analyze matrix equations.

$$
\begin{aligned}
& \text { Let } A, B, C \text { be matrices of the sizes needed for the matrix multiplication } \\
& \text { to be defined, and } A \text { is a } m \times n \text { matrix. } \\
& \begin{array}{l}
\text { 1. (Associative) }(A B) C=A(B C) \\
\text { 2. (Left Distributive) } A(B+C)=A B+A C
\end{array} \\
& \text { 3. (Right Distributive) … } \\
& \text { 4. (Identity for matrix multiplication) } I_{m} A=A I_{n} \\
& \text { Warnings: } \\
& \text { 1. (non-commutative) In general, } A B \neq B A \text {. } \\
& \text { 2. (non-cancellation) } A B=A C \text { does not mean } B=C \text {. } \\
& \text { 3. (Zero divisors) } A B=0 \text { does not mean that either } A=0 \text { or } B=0 \text {. } \\
& \text { Example } \\
& A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \\
& \text { Give an example of a } 2 \times 2 \text { matrix } B \text { that is non-commutative with } A \text {. } \\
& B=\left(\left.\begin{array}{ll}
* & * \\
k & *
\end{array} \right\rvert\,\right. \\
& \text { Itempool } \\
& \text { (1.0) } \mid 1.00=[1.01 \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \\
& \left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
5 & 6 \\
2 & 4
\end{array}\right)=\left[\left.\begin{array}{cc}
7 & 10 \\
0 & 0
\end{array} \right\rvert\, \lambda\right. \\
& {\left[\begin{array}{ll}
5 & 6 \\
2 & 4
\end{array} \left\lvert\,\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
5 & 5 \\
2 & 2
\end{array}\right)\right.\right.}
\end{aligned}
$$

Example
Define

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 4 & 8
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

Which of these operations are defined, and what is the result? 1. $A B$
2. $3 C$
3. $A+3 C$
4. $B^{T} A$
5. C^{3}
6. $C B^{T}$

Additional Example (if time permits)

True or false:

1. For any I_{n} and any $A \in \mathbb{R}^{n \times n},\left(I_{n}+A\right)\left(I_{n}-A\right)=I_{n}-A^{2}$.
2. For any A and B in $\mathbb{R}^{n \times n},(A+B)^{2}=A^{2}+B^{2}+2 A B$.
$(A+B)(A+B) \stackrel{?}{?} A^{2}+2 A B+B^{2}$
(an+ not combine! !

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let
$A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 4 & -3 & 2\end{array}\right], \quad B=\left[\begin{array}{rrr}7 & -5 & 1 \\ 1 & -4 & -3\end{array}\right]$,
$C=\left[\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right], \quad D=\left[\begin{array}{rr}3 & 5 \\ -1 & 4\end{array}\right], \quad E=\left[\begin{array}{r}-5 \\ 3\end{array}\right]$

1. $-2 A, B=2 A, A C, C D$
2. $A+2 B, 3 C-E, C B, E B$

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved "match" appropriately.
3. Let $A=\left[\begin{array}{ll}4 & -1 \\ 5 & -2\end{array}\right]$. Compute $3 I_{2}-A$ and $\left(3 I_{2}\right) A$.
4. Compute $A-5 I_{3}$ and $\left(5 I_{3}\right) A$, when

$$
A=\left[\begin{array}{rrr}
9 & -1 & 3 \\
-8 & 7 & -3 \\
-4 & 1 & 8
\end{array}\right]
$$

In Exercises 5 and 6, compute the product $A B$ in two ways: (a) by the definition, where $A \mathbf{b}_{1}$ and $A \mathbf{b}_{2}$ are computed separately, and (b) by the row-column rule for computing $A B$.
5. $A=\left[\begin{array}{rr}-1 & 2 \\ 5 & 4 \\ 2 & -3\end{array}\right], \quad B=\left[\begin{array}{rr}3 & -4 \\ -2 & 1\end{array}\right]$
6. $A=\left[\begin{array}{rr}4 & -2 \\ -3 & 0 \\ 3 & 5\end{array}\right], \quad B=\left[\begin{array}{rr}1 & 3 \\ 4 & -1\end{array}\right]$
7. If a matrix A is 5×3 and the product $A B$ is 5×7, what is the size of B ?
8. How many rows does B have if $B C$ is a 3×4 matrix?
9. Let $A=\left[\begin{array}{rr}2 & 5 \\ -3 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}4 & -5 \\ 3 & k\end{array}\right]$. What value(s) of k, if any, will make $A B=B A$?
10. Let $A=\left[\begin{array}{rr}2 & -3 \\ -4 & 6\end{array}\right], B=\left[\begin{array}{ll}8 & 4 \\ 5 & 5\end{array}\right]$, and $C=\left[\begin{array}{rr}5 & -2 \\ 3 & 1\end{array}\right]$. Verify that $A B=A C$ and yet $B \neq \vec{C}$.
11. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$. Compute $A D$ and $D A$. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a 3×3 matrix B, not the identity matrix or the zero matrix, such that $A B=B A$.
12. Let $A=\left[\begin{array}{rr}3 & -6 \\ -1 & 2\end{array}\right]$. Construct a 2×2 matrix B such that $A B$ is the zero matrix. Use two different nonzero columns for B.

Exercises $15-24$ concern arbitrary matrices A, B, and C for which the indicated sums and products are defined. Mark each statement True or False (T/F). Justify each answer.
15. (T/F) If A and B are 2×2 with columns $\mathbf{a}_{1}, \mathbf{a}_{2}$, and $\mathbf{b}_{1}, \mathbf{b}_{2}$, respectively, then $A B=\left[\begin{array}{ll}\mathbf{a}_{1} \mathbf{b}_{1} & \mathbf{a}_{2} \mathbf{b}_{2}\end{array}\right]$.
16. (T/F) If A and B are 3×3 and $B=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$, then $A B=\left[A \mathbf{b}_{1}+A \mathbf{b}_{2}+A \mathbf{b}_{3}\right]$.
17. (T/F) Each column of $A B$ is a linear combination of the columns of B using weights from the corresponding column of A.
18. (T/F) The second row of $A B$ is the second row of A multiplied on the right by B.
19. $(\mathbf{T} / \mathbf{F}) A B+A C=A(B+C)$
20. $(\mathbf{T} / \mathbf{F}) A^{T}+B^{T}=(A+B)^{T}$
21. $(\mathbf{T} / \mathbf{F})(A B) C=(A C) B$
22. $(\mathbf{T} / \mathbf{F})(A B)^{T}=A^{T} B^{T}$
23. (T/F) The transpose of a product of matrices equals the product of their transposes in the same order.
24. (T/F) The transpose of a sum of matrices equals the sum of their transposes.
25. If $A=\left[\begin{array}{rr}1 & -2 \\ -2 & 5\end{array}\right]$ and $A B=\left[\begin{array}{rrr}-1 & 2 & -1 \\ 6 & -9 & 3\end{array}\right]$, determine the first and second columns of B.
26. Suppose the first two columns, \mathbf{b}_{1} and \mathbf{b}_{2}, of B are equal. What can you say about the columns of $A B$ (if $A B$ is defined)? Why?
27. Suppose the third column of B is the sum of the first two columns. What can you say about the third column of $A B$? Why?
28. Suppose the second column of B is all zeros. What can you say about the second column of $A B$?
29. Suppose the last column of $A B$ is all zeros, but B itself has no column of zeros. What can you say about the columns of A ?
30. Show that if the columns of B are linearly dependent, then so are the columns of $A B$.
31. Suppose $C A=I_{n}$ (the $n \times n$ identity matrix). Show that the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. Explain why A cannot have more columns than rows.
32. Suppose $A D=I_{m}$ (the $m \times m$ identity matrix). Show that for any \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution. [Hint: Think about the equation $A D \mathbf{b}=\mathrm{b}$.] Explain why A cannot have more rows than columns.
33. Suppose A is an $m \times n$ matrix and there exist $n \times m$ matrices C and D such that $C A=I_{n}$ and $A D=I_{m}$. Prove that $m=n$ and $C=D$. [Hint: Think about the product CAD.]

Section 2.2 : Inverse of a Matrix

Chapter 2 : Matrix Algebra
Math 1554 Linear Algebra

"Your scientists were so preoccupied with whether or not they could, they didn't stop to think if they should. ${ }^{\text {- }}$

Spielberg and Crichton, Jurassic Park, 1993 film
The algorithm we introduce in this section could be used to compute an inverse of an $n \times n$ matrix. At the end of the lecture we'll discuss some of the problems with our algorithm and why it can be difficult to compute a matrix inverse.

Topics and Objectives

Topics

We will cover these topics in this section.

1. Inverse of a matrix, its algebraic properties, and its relation to solving systems of linear equations.
2. Elementary matrices and their role in calculating the matrix inverse.

Objectives

For the topics covered in this section, students are expected to be able to do the following

1. Apply the formal definition of an inverse, and its algebraic properties, to solve and analyze linear systems.
2. Compute the inverse of an $n \times n$ matrix, and use it to solve linear systems.
3. Construct elementary matrices.

Motivating Question

Is there a matrix, A, such that $\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right] A=I_{3}$?

Topics and Objectives

Chapter 2 : Matrix Algebra
Math 1554 Linear Algebra
-Your scientists were so preoccupied with whether ar nor they could. they dide't stop to think if they should:"
-Spielberg and Crichton. Jurassic Park, 1993 fam
The algorithm we introduce in this sanction could be used to compute an inverse of an $n \times n$ matrix. At the end of the lecture neil discuss some of matrix immerse.

Topics
We will cover these topics in this section.
Inverse of a matrix its algebraic properties, and its relation to
2 Elementary matrices and their role in calculating the matrix inverse.
Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Apply the formal definition of an imerse, and its algebraic

2 properties, to solve and analyse linear systems. systems.
3 Construct elementary matrices.
Motivating Question
Is there a matrix, A, such that $\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right] A=I_{3}$?

Course Schedule

The Matrix Inverse Book detn.

The Inverse of a 2×2 Matrix
There's a formula for computing the inverse of a 2×2 matrix.

Theorem
The 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is non-singular if and only if
$a d-b c \neq 0$, and then

$$
\left[\begin{array}{ll}
a_{a} & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Example
State the inverse of the matrix below.

$$
\left[\begin{array}{rr}
2 & 5 \\
-3 & -7
\end{array}\right]
$$

$$
\left(\begin{array}{cc}
2 & 5 \\
-3 & -7
\end{array}\right]^{-1}=\frac{1}{2(-7)-(5)(-3)}\left[\begin{array}{cc}
-7 & -5 \\
3 & 2
\end{array}\right]
$$

$$
=\frac{1}{-14+5} 1\left[\begin{array}{rr}
-7 & -5 \\
3 & 2
\end{array}\right]=\left[\begin{array}{rr}
-7 & -5 \\
3 & 2
\end{array}\right] \begin{gathered}
\text { the whose } \\
\text { of } A
\end{gathered}
$$

Check

$$
\begin{array}{r}
{\left[\begin{array}{cc}
-7 & -5 \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 5 \\
-3 & -7
\end{array}\right]=\left[\begin{array}{cc}
-14+15 & -35+35 \\
6-6 & 15-14
\end{array}\right]} \\
A^{-1} * A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

The Matrix Inverse Why?

$$
\begin{aligned}
& \text { Theorem } \\
& A \in \mathbb{R}^{n \times n} \text { has an inverse if and only if for all } \vec{b} \in \mathbb{R}^{n}, A \vec{x}=\vec{b} \\
& \text { has a unique solution. And, in this case, } \vec{x}=A^{-1} \vec{b} \text {. }
\end{aligned}
$$

Important: In applications, the entries of A are given in terms of units, say deflection per unit load. Then A^{-1} is given in terms
deflection. (Always keep units in mind in applications.) Example

What ahwt
A and B are invertible $n \times n$ matrices.
Properties of the Matrix Inverse
(3) $\begin{aligned} & \left(A B A^{-1}\right)^{-1}=A \\ & \text { 3. }\left(A^{T}\right)^{-1}=\left(A^{-1} A^{-1}\right)^{T}\end{aligned}$ (Non-commutativel) $A\left(B B^{-1}\right) A^{-1}$?
Example
True or false: $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.

$$
\begin{aligned}
& =A I A^{-1} \\
& =A A^{-1}=I .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\substack{3 x_{1}+x_{2}=7 \\
5 x_{1}+\sigma_{2}=7}
\end{array} \Leftrightarrow\left[\begin{array}{ll|l}
3 & 4 & 7 \\
5 & 6 & 7
\end{array}\right]\right)
$$

Step compute A -

$$
\text { \& } A x=b \text { I }
$$

Step 2 : compile $A^{-1} 6$

$$
A^{-1} \vec{b}=\left(\begin{array}{cc}
-3 & 2 \\
5(2 & -312
\end{array}\right)\binom{7}{7}=\binom{-21+14}{\frac{35}{2}-\frac{21}{2}}=\binom{-7}{7}=x
$$

An Algorithm for Computing A^{-1}
If $A \in \mathbb{R}^{n \times n}$, and $n>2$, how do we calculate A^{-1} ? Here's an algorithm
we can use: 1. Row reduce the augmented matrix $\left(A \mid I_{n}\right)$ Otherwise. A is norm $\left(I_{n} \mid B\right)$ then A is invertible and $B=A^{-1}$.

Example

$$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right]=[A \mid I]
$$

Why Does This Work?

$$
A * A^{-1} \stackrel{?}{=} I_{3}
$$

$$
\begin{aligned}
& 3(-7)+4(7)=7 \\
& 5(-7)+6(7)^{2}=7
\end{aligned}
$$

$$
\begin{aligned}
& (3 \mid 1] \\
& \sim\left(1 \left\lvert\, \frac{1}{3}\right.\right)
\end{aligned}
$$

check

$$
\begin{aligned}
& \sim\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& =3 h_{3}+n_{12}\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 1 & -3 \\
0 & 1 & 0 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& =\left[I \left\lvert\, \begin{array}{ll|l}
-1
\end{array}\right.\right]
\end{aligned}
$$

$$
\Psi_{I_{3}} \eta
$$

$$
\begin{aligned}
& \left.\left.\left\lvert\, \begin{array}{ccc}
3 & N_{4} \\
5 & 6
\end{array}\right.\right]^{-1}=\frac{1}{18-20} \left\lvert\, \begin{array}{cc}
6 & -4 \\
-5 & 3
\end{array}\right.\right) \text { Then } A^{-1} \cdot \vec{x} \vec{x}=A^{-1} 6 \\
& =-\frac{1}{2}\left|\begin{array}{cc}
6 & -4 \\
-5 & 3
\end{array}\right|=\left[\begin{array}{cc}
-3 & 2 \\
5 / 2 & -3 / 2
\end{array}\right)=A^{-1} \quad \begin{array}{ll}
I_{x} & =A^{-1} b \\
\dot{x}=A^{-1} b
\end{array} \quad \text { Czech }
\end{aligned}
$$

An elementary matrix, E, is one that differs by I_{n} by one row operation. Reel our elementary row operations:
(1) swap rows
2. multiply a row by a non-zero scalar

Suppose is the same as
multiplying or timon
3. add a multiple of one row to another

By inspection, what is E ? How does it compare to I_{3} ?
We can represent each operation by a matrix multiplication with an elementary matrix.
$E_{1}+A$

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ g & h & i \\ d & e & f\end{array}\right]$
$E_{2} * A$

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-62_{2} \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 1
\end{array}\right]=E_{2}
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
6 d & 6 e & 6 f \\
g & h & i
\end{array}\right]
$$

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \sim_{2 R+R_{3}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]=E_{3} \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & c
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
z a+g & z+h & z c+i
\end{array}\right]
$$

Returning to understanding why our algorithm works, we apply a sequence of row operations to A to obtain I_{n} :

$$
\left(E_{2} \cdots E_{3} E_{2} E_{1}\right) A=J_{n}
$$

Thus, $E_{k} \cdots E_{3} E_{2} E_{1}$ is the inverse matrix we seek.
Our algorithm for calculating the inverse of a matrix is the result of the following theorem.

Theorem
Matrix A is invertible if and only if it is row equivalent to the identity. In this case, the any sequence of elementary row op-
eratioes that transforms A into I, applied to I. generates A^{-1}.

- We could use A^{-1} to solve a linear system.
$A Z=\delta$
We would calculate A^{-1} and then:
- As our textbook points out, \boldsymbol{A}^{-1} is seldom used: computing it can take a very long time, and is prone to numerical error.
- So why did we learn how to compute A^{-1} ? Later on in this course,
we use elementary matrices and properties of A^{-1} to derive results.
- A recurring theme of this course: just because we can do something a certain way, doesn't that we should.

Find the inverses of the matrices in Exercises 1-4.

1. $\left[\begin{array}{ll}8 & 6 \\ 5 & 4\end{array}\right]$
2. $\left[\begin{array}{ll}3 & 2 \\ 7 & 4\end{array}\right]$
3. $\left[\begin{array}{rr}8 & 5 \\ -7 & -5\end{array}\right]$
4. $\left[\begin{array}{ll}3 & -4 \\ 7 & -8\end{array}\right]$
5. Use the inverse found in Exercise 1 to solve the system
$8 x_{1}+6 x_{2}=2$
$5 x_{1}+4 x_{2}=-1$
6. Use the inverse found in Exercise 3 to solve the system
$8 x_{1}+5 x_{2}=-9$
$-7 x_{1}-5 x_{2}=11$
7. Let $A=\left[\begin{array}{rr}1 & 2 \\ 5 & 12\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{r}-1 \\ 3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}1 \\ -5\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{l}2 \\ 6\end{array}\right]$, and $\mathbf{b}_{4}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
a. Find A^{-1}, and use it to solve the four equations $A \mathbf{x}=\mathbf{b}_{1}$, $A \mathbf{x}=\mathbf{b}_{2}, A \mathbf{x}=\mathbf{b}_{3}, A \mathbf{x}=\mathbf{b}_{4}$
b. The four equations in part (a) can be solved by the same set of row operations, since the coefficient matrix is the same in each case. Solve the four equations in part (a) by row reducing the augmented matrix $\left[\begin{array}{lllll}A & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4}\end{array}\right]$.
8. Use matrix algebra to show that if A is invertible and D satisfies $A D=I$, then $D=A^{-1}$.

112 CHAPTER 2 Matrix Algebra

$$
\text { If }\left[\begin{array}{ll}
A & B
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ll}
I & X
\end{array}\right] \text {, then } X=A^{-1} B \text {. }
$$

If A is larger than 2×2, then row reduction of $[A B]$ is much faster than computing both A^{-1} and $A^{-1} B$.
13. Suppose $A B=A C$, where B and C are $n \times p$ matrices and A is invertible. Show that $B=C$. Is this true, in general, when A is not invertible?
14. Suppose $(B-C) D=0$, where B and C are $m \times n$ matrices and D is invertible. Show that $B=C$.
15. Suppose A, B, and C are invertible $n \times n$ matrices. Show that $A B C$ is also invertible by producing a matrix D such that $(A B C) D=I$ and $D(A B C)=I$.
16. Suppose A and B are $n \times n, B$ is invertible, and $A B$ is invertible. Show that A is invertible. [Hint: Let $C=A B$, and solve this equation for A.]
17. Solve the equation $A B=B C$ for A, assuming that A, B, and C are square and B is invertible.
18. Suppose P is invertible and $A=P B P^{-1}$. Solve for B in terms of A.
19. If A, B, and C are $n \times n$ invertible matrices, does the equation $C^{-1}(A+X) B^{-1}=I_{n}$ have a solution, X ? If so, find it.
38. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$. Construct a 4×2 matrix D using only 1 and 0 as entries, such that $A D=I_{2}$. Is it possible that $C A=I_{4}$ for some 4×2 matrix C ? Why or why not?

In Exercises 9 and 10, mark each statement True or False. Justify each answer.
9. a. In order for a matrix B to be the inverse of A, both equations $A B=I$ and $B A=I$ must be true.
b. If A and B are $n \times n$ and invertible, then $A^{-1} B^{-1}$ is the inverse of $A B$.
c. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $a b-c d \neq 0$, then A is invertible.
d. If A is an invertible $n \times n$ matrix, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^{n}.
e. Each elementary matrix is invertible.
10. a. A product of invertible $n \times n$ matrices is invertible, and the inverse of the product is the product of their inverses in the same order.
b. If A is invertible, then the inverse of A^{-1} is A itself.
c. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $a d=b c$, then A is not invertible.
d. If A can be row reduced to the identity matrix, then A must be invertible.
e. If A is invertible, then elementary row operations that reduce A to the identity I_{n} also reduce A^{-1} to I_{n}.
11. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Show that the equation $A X=B$ has a unique solution $A^{-1} B$.
12. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Explain why $A^{-1} B$ can be computed by row reduction:

Find the inverses of the matrices in Exercises 29-32, if they exist. Use the algorithm introduced in this section.
29. $\left[\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}\right]$
30. $\left[\begin{array}{rr}5 & 10 \\ 4 & 7\end{array}\right]$
31. $\left[\begin{array}{rrr}1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4\end{array}\right]$
32. $\left[\begin{array}{rrr}1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4\end{array}\right]$
33. Use the algorithm from this section to find the inverses of
$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$.
Let A be the corresponding $n \times n$ matrix, and let B be its inverse. Guess the form of B, and then prove that $A B=I$ and $B A=I$.
34. Repeat the strategy of Exercise 33 to guess the inverse of $A=\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 1 & 2 & 0 & & 0 \\ 1 & 2 & 3 & & 0 \\ \vdots & & & \ddots & \vdots \\ 1 & 2 & 3 & \cdots & n\end{array}\right]$. Prove that your guess is
35. Let $A=\left[\begin{array}{rrr}-2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4\end{array}\right]$. Find the third column of A^{-1}

