

Section 2.3: Invertible Matrices

Chapter 2: Matrix Algebra

Math 1554 Linear Algebra

"A synonym is a word you use when you can't spell the other one." - Baltasar Gracián

The theorem we introduce in this section of the course gives us many ways of saying the same thing. Depending on the context, some will be more convenient than others.

Topics and Objectives

Topics

We will cover these topics in this section.

 The invertible matrix theorem, which is a review/synthesis of many of the concepts we have introduced.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- Characterize the invertibility of a matrix using the Invertible Matrix Theorem.
- 2. Construct and give examples of matrices that are/are not invertible.

Motivating Question

When is a square matrix invertible? Let me count the ways!

Section 2.3: Invertible Matrices

Chapter 2: Matrix Algebra Math 1554 Linear Algebra

"A synonym is a word you use when you can't spell the other one." - Baltasar Gracián

The theorem we introduce in this section of the course gives us many ways of saying the same thing. Depending on the context, some will be more convenient than others

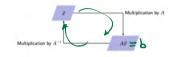
Topics and Objectives

Topics We will cover these topics in this section.

1. The invertible matrix theorem, which is a review/synthesis of many of the concepts we have introduced.

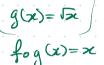
Objectives

For the topics covered in this section, students are expected to be able to do the following.


- 1. Characterize the invertibility of a matrix using the Invertible Matrix
- 2. Construct and give examples of matrices that are/are not invertible

Motivating Question

When is a square matrix invertible? Let me count the ways!


W51.1 1.2 W51.2 W51.1 1/22 - 1/26 1.7 W51.5.1.7 W51.9,2.1 2/12 - 2/16 29 2931 2/19 - 2/23 3.3 W53.2 W53349 2/26 - 3/1 5.2 WSS 1.5.2 Exam 2. Rev Cancel 5.5 W55.3 WSASAA WSPane W57172 4/15 - 4/19 7.3.7.4 W57.3 7.6

Invertibility and Composition

The matrix inverse A^{-1} transforms Ax back to \vec{x} . This is because:

$$A^{-1}(A\vec{x}) = (A^{-1}A)\vec{x} =$$

Course Schedule

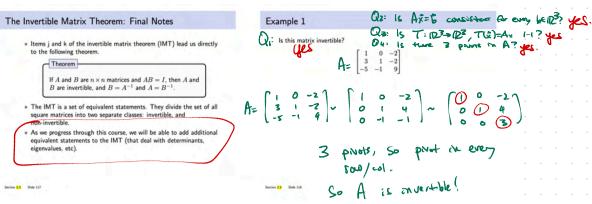
The Invertible Matrix Theorem

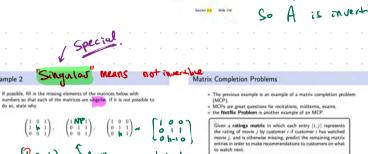
Invertible matrices enjoy a rich set of equivalent descriptions

- Let A be an $n \times n$ matrix. These statements are all equivalent.
- a) A is invertible.
- b) A is row equivalent to In.
- c) A has n pivotal columns. (All columns are pivotal.)
- d) $A\vec{x} = \vec{0}$ has only the trivial solution.
- The columns of A are linearly independent.
- f) The linear transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one
- g) The equation $A\vec{x} = \vec{b}$ has a solution for all $\vec{b} \in \mathbb{R}^n$.
- h) The columns of A span R".
- The linear transformation $\vec{x} \mapsto A\vec{x}$ is onto

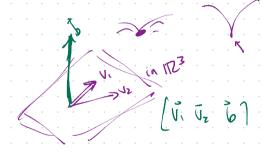
There is a $n \times n$ matrix C so that $CA = I_n$. (A has a left inverse.) k) There is a $n \times n$ matrix D so that $AD = I_n$. (A has a right inverse.)

A. is invertible


a) inverse B.



$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{n}$$


(T(e) Tei)

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

he lonly

2.3 EXERCISES

Unless otherwise specified, assume that all matrices in these exercises are $n \times n$. Determine which of the matrices in Exercises 1-10 are invertible. Use as few calculations as possible. Justify

- 0
- 5 9 6 2 2 8 10 11 0

10

2 -8 10. IMI 5 3 10 9 6 _9 -5 11

answer.

the exercises is an implication of the form "If "statement 1", then "statement 2"." Mark an implication as True if the truth of "statement 2" always follows whenever "statement 1" happens to be true. An implication is False if there is an instance in which "statement 2" is false but "statement 1" is true. Justify each

In Exercises 11 and 12, the matrices are all $n \times n$. Each part of

- 11. a. If the equation Ax = 0 has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
 - b. If the columns of A span \mathbb{R}^n , then the columns are linearly independent. c. If A is an $n \times n$ matrix, then the equation $A\mathbf{x} = \mathbf{b}$ has at
 - least one solution for each \mathbf{b} in \mathbb{R}^n d. If the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, then A has fewer than n pivot positions.
 - e. If AT is not invertible, then A is not invertible.
- 12. a. If there is an $n \times n$ matrix D such that AD = I, then there is also an $n \times n$ matrix C such that CA = I.

30. If A is an $n \times n$ matrix and the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one, what else can you say about this transformation?

b. If the columns of A are linearly independent, then the

- d. If the linear transformation (x) → Ax maps R" into R", then A has n pivot positions e. If there is a **b** in \mathbb{R}^n such that the equation $A\mathbf{x} = \mathbf{b}$ is
 - inconsistent, then the transformation $x \mapsto Ax$ is not one-
- 13. An $m \times n$ upper triangular matrix is one whose entries below the main diagonal are 0's (as in Exercise 8). When is a square upper triangular matrix invertible? Justify your
- 14. An $m \times n$ lower triangular matrix is one whose entries above the main diagonal are 0's (as in Exercise 3). When is a square lower triangular matrix invertible? Justify your
- 15. Can a square matrix with two identical columns be invertible? Why or why not? 16. Is it possible for a 5×5 matrix to be invertible when its
- columns do not span R5? Why or why not? 17. If A is invertible, then the columns of A^{-1} are linearly
- independent. Explain why. **18.** If C is 6×6 and the equation $C\mathbf{x} = \mathbf{v}$ is consistent for every \mathbf{v} in \mathbb{R}^6 , is it possible that for some \mathbf{v} , the equation $C\mathbf{x} = \mathbf{v}$
- has more than one solution? Why or why not? 19. If the columns of a 7×7 matrix D are linearly independent, what can you say about solutions of $D\mathbf{x} = \mathbf{b}$? Why?
- **20.** If $n \times n$ matrices E and F have the property that EF = I,
- then E and F commute. Explain why. 21. If the equation $G\mathbf{x} = \mathbf{y}$ has more than one solution for some
- y in \mathbb{R}^n , can the columns of G span \mathbb{R}^n ? Why or why not? 22. If the equation $H\mathbf{x} = \mathbf{c}$ is inconsistent for some \mathbf{c} in \mathbb{R}^n , what
- can you say about the equation $H\mathbf{x} = \mathbf{0}$? Why? 23. If an $n \times n$ matrix K cannot be row reduced to I_n , what can
- you say about the columns of K? Why? **24.** If L is $n \times n$ and the equation $L\mathbf{x} = \mathbf{0}$ has the trivial solution.
- 25. Verify the boxed statement preceding Example 1.

do the columns of L span \mathbb{R}^n ? Why?

- 26. Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent.
- 27. Show that if AR is invertible, so is A. You cannot use Theorem. 6(b), because you cannot assume that A and B are invertible.
- [Hint: There is a matrix W such that ABW = I. Why?] 28. Show that if AB is invertible, so is B.
- 29. If A is an $n \times n$ matrix and the equation Ax = b has more than
- 31. Suppose A is an $n \times n$ matrix with the property that the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n . Without using Theorems 5 or 8, explain why each equation Ax = b has in fact exactly one solution.
- 32. Suppose A is an $n \times n$ matrix with the property that the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation
- $A\mathbf{x} = \mathbf{b}$ must have a solution for each \mathbf{b} in \mathbb{R}^n . In Exercises 33 and 34, T is a linear transformation from \mathbb{R}^2 into
- \mathbb{R}^2 . Show that T is invertible and find a formula for T^{-1} . **33.** $T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 - 7x_2)$
- **34.** $T(x_1, x_2) = (6x_1 8x_2, -5x_1 + 7x_2)$

Justify your answer.

- 35. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear transformation. Ex
 - plain why T is both one-to-one and onto \mathbb{R}^n . Use equations (1) and (2). Then give a second explanation using one or more
- **36.** Let T be a linear transformation that maps \mathbb{R}^n onto \mathbb{R}^n . Show that T^{-1} exists and maps \mathbb{R}^n onto \mathbb{R}^n . Is T^{-1} also one-toone?
- 37. Suppose T and U are linear transformations from \mathbb{R}^n to \mathbb{R}^n such that $T(U\mathbf{x}) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . Is it true that $U(T\mathbf{x}) = \mathbf{x}$ for all x in \mathbb{R}^n ? Why or why not?

Section 2.4: Partitioned Matrices

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

1. Partitioned matrices (or block matrices)

Objectives

For the topics covered in this section, students are expected to be able to do the following.

 Apply partitioned matrices to solve problems regarding matrix invertibility and matrix multiplication.

Section 2.4: Partitioned Matrices

Chapter 2 : Matrix Algebra Math 1554 Linear Algebra

Topics and Objectives

Topics
We will cover these topics in this section.

1. Partitioned matrices (or block matrices)

ObjectivesFor the topics covered in this section, students are expected to be able to do the following.

Apply partitioned matrices to solve problems regarding matrix invertibility and matrix multiplication.

			5	2/5 - 2/9	2.3,2.4	WS2.2-2.4	2.5	WS2.5	2.8
			6	2/12 - 2/16	2.9	WS2.8	2.9,3.1	WS2.9,3.1	3.2
			7	2/19 - 2/23	3.3	WS3.2	4.9	WS3.3,4.9	5.1
			8	2/26 - 3/1	5.2	WS5.1,5.2	Exam 2, Review	Cancelled	5.3

Sub matrices What is a Partitioned Matrix?

Another Example of a Partitioned Matrix

Example: The reduced echelon form of a matrix. We can use a

Row Column Method

s a scalar. For example,
$$\sqrt[3]{T} * \overline{U}$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{vmatrix} 1 & 1 & 2 & 0 + 3 & 2 & = 7 \end{bmatrix}$$

Let A be $m \times n$ and B be $n \times p$ matrix. Then, the (i,j) entry of AB is

This is the Row Column Method for matrix multiplicati

ABC, X, Y, Z, WE IP nxn

Example of Row Column Method

Recall, using our formula for a 2×2 matrix, $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}^{-1} = \frac{1}{ac} \begin{bmatrix} c & -b \\ 0 & a \end{bmatrix}$

Superse & A, B, C all Invertible

X Y = (A-ARC)

Find (X, Y, Z, W Sit.

AB)-I= (XY)

SYAX+BZ=In

ZAY+BW= Onen @ 31 CZ=Onxn

P CW=I

3 C2=0 > C'CZ=C'O => Z=0

SN W=C-1

becomes AX+BO=I > AX=I

3 AY+BC-1=0 => AY=-BC-1

→ A+AY= A-(-BC) => 1 = [-A-1BC] 7.

21. a. Verify that $A^2 = I$ when $A = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & 1 \end{bmatrix}$$

6. $\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$

$$\begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix}$$

Row Column Method

Recall that a row vector times a following vector (of the right dimen

Let A be $m \times n$ and B be $n \times p$ matrix. Then, the (i,j)row, A · col, B.

This is the Row Column Method for matrix multiplication

ned matrices can be multiplied using this method, as if each block

using our formula for a 2×2 matrix, $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}^{-1} = \frac{1}{ac} \begin{bmatrix} c & -b \\ 0 & a \end{bmatrix}$.

маtrices. Construct the inverse of $\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}.$

(A B) -(= (A-(

SN W=C-1 3 A4+BC-

21. a. Verify that $A^2 = I$ when $A = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$ b. Use partitioned matrices to show that $M^2 = I$ when

$$\begin{bmatrix} A & B & -1 & ?? & I & C & -B \\ O & C & A & C & C & A \end{bmatrix}$$

X+BO=I = AX=I $3 \times A^{-1}$

ATAY= A'(-BC) => 1 = [-A-1BC] 7

6. $\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$

21. a. Verify that
$$A^2 = I$$
 when $A = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}$.
b. Use partitioned matrices to show that $M^2 = I$ when

b. Use partitioned matrices to show that
$$M^2 = I$$
 when

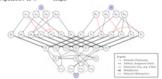
b. Use partitioned matrices to show that
$$M^2 = I$$
 when

6.
$$\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

b. Use partitioned matrices to show that
$$M^2 = I$$
 when
$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
2 & -1 & 0 & 0
\end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

b. Use partitioned matrices to show that
$$M^2 = I$$
 when
$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
3 & -1 & 0 & 0
\end{bmatrix}$$


The Column Row Method (if time permits)

A column vector times a row vector is a matrix. For example,

$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix} =$$

The Strassen Algorithm: An impressive use of partitioned matrices

Naive Multiplication of two $n\times n$ matrices A and B requires n^3 arithmetic steps. Strassen's algorithm **partitions** the matrices, makes a very clever sequence of multiplications, additions, to reduce the computation to $n^{2.600}$... steps.

Students aren't expected to be familiar with this material. It's presented to motivate matrix partitioning.

Section 2.4 Slide 13

The Fast Fourier Transform (FFT)

The FFT is an essential algorithm of modern technology that uses partitioned matrices recursively.

$$G_0 = \begin{bmatrix} 1 \end{bmatrix}, \qquad G_{n+1} = \begin{bmatrix} G_n & -G_n \\ G_n & G_n \end{bmatrix}$$

The recursive structure of the matrix means that it can be computed in nearly linear time. This is an incredible saving over the general complexity of n^2 . It means that we can compute G_nx , and G_n^{-1} very quickly.

Students aren't expected to be familiar with this material. It's presented to

Section 2.4 State 129

In Exercises 1-9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1-4.

1.
$$\begin{bmatrix} I & 0 \\ E & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

2.
$$\begin{bmatrix} E & 0 \\ 0 & F \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

3.
$$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} W \\ Y \end{bmatrix}$$

4.
$$\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
s for X, Y, and Z in terms of A, I

In Exercises 5–8, find formulas for X, Y, and Z in terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint: Compute the product on the left, and set it equal to the right side.]

5.
$$\begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ X & Y \end{bmatrix} = \begin{bmatrix} 0 & I \\ Z & 0 \end{bmatrix}$$

6.
$$\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

7.
$$\begin{bmatrix} X & 0 & 0 \\ Y & 0 & I \end{bmatrix} \begin{bmatrix} A & Z \\ 0 & 0 \\ B & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

8.
$$\begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} X & Y & Z \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}$$

Suppose A₁₁ is an invertible matrix. Find matrices X and Y such that the product below has the form indicated. Also, compute B₂₂. [Hint: Compute the product on the left, and set it equal to the right side.]

$$\begin{bmatrix} I & 0 & 0 \\ X & I & 0 \\ Y & 0 & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \\ 0 & B_{32} \end{bmatrix}$$

10. The inverse of
$$\begin{bmatrix} I & 0 & 0 \\ C & I & 0 \\ A & B & I \end{bmatrix}$$
 is
$$\begin{bmatrix} I & 0 & 0 \\ Z & I & 0 \\ X & Y & I \end{bmatrix}$$
.

Find X, Y, and Z

In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11. a. If
$$A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$$
 and $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$, with A_1 and A_2 the same sizes as B_1 and B_2 , respectively, then $A + B = \begin{bmatrix} A_1 + B_1 & A_2 + B_2 \end{bmatrix}$.

b. If
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$, then the partitions of A and B are conformable for block multiplication.

 a. The definition of the matrix-vector product Ax is a special case of block multiplication.

b. If
$$A_1$$
, A_2 , B_1 , and B_2 are $n \times n$ matrices, $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, and $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$, then the product BA is defined, but AB is not.

13. Let
$$A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$$
, where B and C are square. Show that A

is invertible if and only if both B and C are invertible.

14. Show that the block upper triangular matrix A in Example 5 is invertible if and only if both A₁₁ and A₂₂ are invertible. [Hint: If A₁₁ and A₂₂ are invertible, the formula for A⁻¹ given in Example 5 actually works as the inverse of A₂]. This fact about A is an important part of several computer algorithms that estimate eigenvalues of matrices. Eigenvalues are discussed in Chapter 5.

15. Suppose A_{11} is invertible. Find X and Y such that

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}$$
(7)

where $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$. The matrix S is called the Schur complement of A_{11} . Likewise, if A_{22} is invertible, the matrix $A_{11} - A_{12}A_{22}^{-1}A_{21}$ is called the Schur complement of A_{22} . Such expressions occur frequently in the theory of systems engineering, and elsewhere.

16. Suppose the block matrix A on the left side of (7) is invertible and A₁₁ is invertible. Show that the Schur complement S of A₁₁ is invertible, If The outside factors on the right side of (7) are always invertible. Verify this.] When A and A₁₁ are both invertible, (7) leads to a formula for A⁻¹, using S⁻¹, A₁₁, and the other entries in A.

Section 2.5: Matrix Factorizations

Chapter 2: Matrix Algebra

Math 1554 Linear Algebra

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity." - Alan Turing

The use of the LU Decomposition to solve linear systems was one of the areas of mathematics that Turing helped develop.

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. The LU factorization of a matrix
- 2. Using the LU factorization to solve a system
- 3. Why the LU factorization works

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Compute an LU factorization of a matrix.
- 2. Apply the LU factorization to solve systems of equations.
- 3. Determine whether a matrix has an LU factorization.

ction 2.5 Slide 130 Section 2.5 Slide 131

Section 2.5 : Matrix Factorizations

Chapter 2 : Matrix Algebra Math 1554 Linear Algebra

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition a ingensity." - Alan Turing

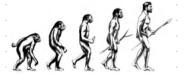
The use of the LU Decomposition to solve linear systems was one of the areas of mathematics that Turing helped develop.

For the topics covered in this section, students are expected to be do the following.

1. Compute an LU factorization of a matrix.

Topics and Objectives

Topics We will cover these topics in this section


1. The LII factorization of a matrix

2. Apply the LU factorization to solve systems of equations

Using the LU factorization to solve a system 3. Why the LU factorization works

3. Determine whether a matrix has an LU factorization.

2/5 - 2/0 2224 WC2 2-24 2/12 - 2/16 2.9 WS2.8 2.9.3.1 WS2.9,3.1 2/19 - 2/23 3.3 MC2 2 M/52 2 4 0 WS5.1.5.2

In the beginning, ...

with integers there were *prime* factorizations...

then came the *polynomial* factorizations..

until finally, ...

of a matrix into a product of matrices.

the properties of a matrix.

triangular matrices

Factorizations can be useful for solving $A\vec{x} = \vec{b}$, or understanding

. We explore a few matrix factorizations throughout this course . In this section, we factor a matrix into lower and into upper

Matrix Factorizations

matrix factorizations appeared!

Motivation

• Recall that we could solve $A\vec{x} = \vec{b}$ by using

$$\vec{x} = A^{-1} \vec{b}$$

- This requires computation of the inverse of an n × n matrix, which
 is especially difficult for large n.
- Instead we could solve $A\vec{x}=\vec{b}$ with Gaussian Elimination, but this is
- not efficient for large n . There are more efficient and accurate methods for solving linear

The LU Factorization

$$A = LU = \begin{pmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ * & * & 1 \end{pmatrix} \begin{pmatrix} * & * \\ 0 & * \\ 0 & 0 \end{pmatrix}$$

[00] Foragonal

[100]

Why We Can Compute the LU Factorization

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

$$A = \underbrace{E_1^{-1} \cdots E_p^{-1}}_{} U = LU.$$

$$A = LU = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 16 \\ 2 \\ -4 \\ 6 \end{pmatrix}$$

An Algorithm for Computing LU

To compute the LU decomposition:

- Reduce A to an echelon form U by a sequence of ro operations, if possible.
- Place entries in L such that the same sequence of row operati-reduces L to I.

- In MATH 1554, the only row replacement opera replace a row with a multiple of a row above it.

· More advanced linear algebra courses address this limita

clear

$$A = \begin{pmatrix} 4 & -3 & -1 & 5 \\ -16 & 12 & 2 & -17 \\ 8 & -6 & -12 & 22 \end{pmatrix} \quad \text{CR} + \text{C} + \text{$$

A= Ei Ez Ez U

Another Explanation for How to Construct L

First compute the echelon form U of A. Highlight the entries that

$$A = \begin{bmatrix} 12 & 4 & -1 & 5 & -2 \\ 1 & -5 & -3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 31 & 1 & 2 & -5 \\ 0 & 0 & 7 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 33 & 1 & 2 & -5 \\ 0 & 9 & -2 & -4 & 10 \end{bmatrix} = A_1$$

$$\sim A_1 = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -1 \\ 0 & 0 & 3 & 2 & 2 & -1 \\ 0 & 0 & 0 & 3 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -5 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix} = t^{I}$$

$$\begin{bmatrix} 1 & -3 & -2 & -1 \\ 1 & +1 & 1 & 1 \\ -2 & 1 & 1 \\ -3 & 4 & 2 & 1 \end{bmatrix} \text{ and } \hat{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{bmatrix}$$

Summary

- * To solve $A\vec{x} = LU\vec{x} = \vec{b},$ 1. Forward solve for \vec{y} in $L\vec{y} = \vec{b},$ 2. Backwards solve for \vec{x} in $L\vec{y} = \vec{b},$ 2. Backwards solve for \vec{x} in $L\vec{y} = \vec{y},$ * To compute the LU decomposition:

 1. Results of Loss relation from U by a sequence of row replacement operations, if possible.

 2. Paice entries in L such that the same sequence of row operations reduces L to L.

 * The tecthodo offers a different explanation of how to construct the LU decomposition that students may find helpful.
- Another explanation on how to calculate the LU decomposition that students may find helpful is available from MIT OpenCourseWare: www.youtube.com/watch?v=rhNKncraJMk

Additional Example (if time permits)

Construct the LU decomposition of A.

$$A = \begin{pmatrix} 3 & -1 & 4 \\ 9 & -5 & 15 \\ 15 & -1 & 10 \\ -6 & 2 & -4 \end{pmatrix}$$

2.5 EXERCISES

In Exercises 1–6, solve the equation $A\mathbf{x} = \mathbf{b}$ by using the LU factorization given for A. In Exercises 1 and 2, also solve $A\mathbf{x} = \mathbf{b}$ by ordinary row reduction.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ 0 & -3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

1.
$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}$$
 b $= \begin{bmatrix} -7 \\ 5 \\ 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$

4.
$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 6 & -8 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -5 \\ 0 & -2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$

5.
$$A = \begin{bmatrix} 1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -1 & 2 & 6 & 4 \\ -4 & -1 & 9 & 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -4 & 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -4 & -3 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$

6.
$$A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 \\ -5 & 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find an LU factorization of the matrices in Exercises 7–16 (with L unit lower triangular). Note that MATLAB will usually produce a permuted LU factorization because it uses partial pivoting for numerical accuracy.

7.
$$\begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$$

9. $\begin{bmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \end{bmatrix}$

10.
$$\begin{bmatrix} 4 & 5 \end{bmatrix}$$
10. $\begin{bmatrix} -5 & 3 & 4 \\ 10 & -8 & -9 \end{bmatrix}$

11.
$$\begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{bmatrix}$$

12.
$$\begin{bmatrix} 2 & -4 & 2 \\ 1 & 5 & -4 \\ -6 & -2 & 4 \end{bmatrix}$$

13.
$$\begin{bmatrix} 1 & 3 & -5 & -3 \\ -1 & -5 & 8 & 4 \\ 4 & 2 & -5 & -7 \\ 2 & 4 & 7 & 5 \end{bmatrix}$$

4.
$$\begin{bmatrix} 1 & 4 & -1 & 5 \\ 3 & 7 & -2 & 9 \\ -2 & -3 & 1 & -4 \\ -1 & 6 & -1 & 7 \end{bmatrix}$$

15.
$$\begin{bmatrix} 2 & -4 & 4 & -2 \\ 6 & -9 & 7 & -3 \\ -1 & -4 & 8 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 2 & -6 & 6 \\
 -4 & 5 & -7 \\
 3 & 5 & -1 \\
 -6 & 4 & -8 \\
 8 & -3 & 9
 \end{bmatrix}$$

- 17. When A is invertible, MATLAB finds A⁻¹ by factoring A = LU (where L may be permuted lower triangular), inverting L and U, and then computing U⁻¹L⁻¹. Use this method to compute the inverse of A in Exercise 2. (Apply the algorithm of Section 2.2 to L and to U.)
- 18. Find A^{-1} as in Exercise 17, using A from Exercise 3.

Section 2.8 : Subspaces of \mathbb{R}^n

Chapter 2: Matrix Algebra

Math 1554 Linear Algebra

Itempool

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. Subspaces, Column space, and Null spaces
- 2. A basis for a subspace.

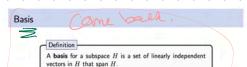
Objectives

For the topics covered in this section, students are expected to be able to do the following.

- . Determine whether a set is a subspace.
- Determine whether a vector is in a particular subspace, or find a vector in that subspace.
- 3. Construct a basis for a subspace (for example, a basis for Col(A))

Motivating Question

Given a matrix A, what is the set of vectors \vec{b} for which we can solve $A\vec{x}=\vec{b}$?


Section 2.8 Slide 1

ction 2.8 Slide 1

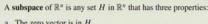
		5 2/5 - 2/9	2.3,2.4	WS2.2-2.4	2.5	WS2.5	2.8
	Topics and Objectives	6 2/12 - 2/16	2.9	WS2.8	2.9,3.1	WS2.9,3.1	3.2
Section 2.8 : Subspaces of \mathbb{R}^n	Topics We will cover these topics in this section. 1. Subspaces, Column space, and Null spaces	7 2/19 - 2/23	3.3	W\$3.2	4.9	WS3.3,4.9	5.1
Chapter 2 : Matrix Algebra	A basis for a subspace.	8 2/26 - 3/1	5.2	WS5.1,5.2	Exam 2, Review	Cancelled	5.3
Math 1554 Linear Algebra	Objectives For the topics covered in this section, students are expected to be able to						
	do the following. 1. Determine whether a set is a subspace.						
	Determine whether a vector is in a particular subspace, or find a vector in that subspace.		0000				
	3. Construct a basis for a subspace (for example, a basis for Col(A))	•	WE	MADE			
	Motivating Question Given a matrix A, what is the set of vectors b for which we can solve						
house the last	Aif = 67			10			
					3		
				1			,
				Maria			
				\mathbf{T}			
			200				
	1		ITIC	FRIR	AVIII		
Subspaces in Subspaces in	" Lefn.		11 9	FRID	:V411		
Definition A subset of R* is any collection of vectors that are in R*. A subset H	of R ⁿ is a subspace if it is closed under scalar multiplies						
and vector	addition. That is: for any $c \in \mathbb{R}$ and for $\vec{u}, \vec{v} \in H$,	(347)					
	I - closed under verrer add.	= (3/2) ds	K				
\$a,e7 ⊆ }a,6,c,de,f} Note that con Example 1: V	Ition 1 implies that the zero vector must be in H . Thich of the following subsets could be a subspace of \mathbb{R}^{2} ?	41 (-14)					
							,
Subset of It's	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a source	pael.				
	4						
	1 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 = 1 3	No Z	٠.)د			
Solv let at vector	1 2 31 2 2 10 6	12E1)	ي. ک	n ot			
which some Axis	10 (16) 10	1 - 5	•				
or Az=ò	(1) (1/2) (1	1.es.	. clob	~			
	W		Viole	tor odd			
Span 3(8), 181, 1917 C. 123	[z], [-1], [-1]	1 ¢ S1.	Gec			Linet	
7/81/161/17/7 - 11			312		۷	, ~	
(subset			-0.00	lov)
	fr / thinks		MA	AT "		2	>
				+ larac	klets	7 · `	\
					91	<u>_</u>	
		· · / · _		·	. 2 .)	
		w = 🗦 🗴	E 122	光=	Hr 3	(
		216		1	رےپ	J '	
· · · · · · · · · · · · · · · · · · ·	21		1	A	5.	ركزم	5
	1 / 1 1 X 1 1	. IS .	1-014	-\	- Coud	(400	٠ خ
			bjett type				
	72	Je.	Aype	Such			
	it is gles	sheas	<u>e</u>)	That			
	0 4 60	C. Soles		\$\m	rid\$,
	$\left(\left(\frac{1}{1}\right)+\left(\frac{2}{2}\right)=\left(\frac{1}{2}\right)$	· //		. 4 *:			
	1 1 1 2 2 2	V .					
	$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$					·r ·	
	(ra) (b) la	461 - <	. V/ . '	yas (losed a	ndels	
	/ a + b = la	in COS		HOC to	c add		
			·) ·	MED!			
	$k \left[1 \right] = \begin{cases} k \\ k \\ a \end{cases} = \begin{cases} k \\ k \end{cases}$	1 .~	/ .		1.		
	k ! = k	1E>2	V	. Clos	c (osed		
	-11-10			11.	tec		
			;	· · · · · · · ·	140.	V_{\perp}	
	· · · · · · · · · · · · · · · · · · ·	a'\	· //·		alor m	rtt.	
	R a = 1.6	56 3 (2					
		~··					

3a,b,c? 303) is a subspace. e.g., Sit a subspace! *three vectors Sz= { [0 | [0] [0] & is it a subspace? [0]+[0]=[0]\$5 3 0]=[0]\$5 per of *the span of three vectors ₹ Jes (D vi, weSy > útweSy / all in IR Sy=Span & VI, Vz, Cheen (1) U = C, V, + C, Vz + C, Vz + C, Vz + G, dz, dz *the set containing only the zero vector 15 Vitw = (4td) v, + (600) 1/2 + (C3+ d3) V3 (Sq Checker U= Civite Vz + Colz kill = kcir+lecz Uz+lecz Uz ESq *all vectors in R^2 that S5 = { xel2 | 2=0 = 2=0} are either on the x-axis or on the **∲**-axis → Itempool $k \binom{a}{0} = \binom{ka}{0}.$

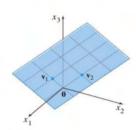
The Column Space and the Null Space of a Matrix Example	Example 2 (continued)
Recall: for $\vec{v}_1,\ldots,\vec{v}_p\in\mathbb{R}^n$, that $\mathrm{Span}\{\vec{v}_1,\ldots,\vec{v}_p\}$ is: $ \bigvee = Neary $ $ A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}, \vec{b} = \begin{bmatrix} 1 & -3 & -4 \\ 0 & 0 & -18 \\ 0 & 0 & 0 \end{bmatrix}, \vec{b} = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix} $	Using the matrix on the previous slide: is \vec{v} in the null space of A ? $\vec{v} = \begin{pmatrix} -5\lambda \\ -3\lambda \\ \lambda \end{pmatrix}, \lambda \in \mathbb{R}$
This is a subspace, spanned by $\vec{v_1}, \dots, \vec{v_p}$. Some particular.	(\(\lambda \)
Definition $N = N = N = N = N = N = N = N = N = N $	
spanned by $\vec{a}_1, \dots, \vec{a}_n$. 2. The null space of A , Null A , is the subspace of \mathbb{R}^n spanned by the set of all vectors \vec{x} that solve $A\vec{x} = \vec{0}$. Cup $ + C_{\vec{x}} +$	
by the set of all vectors x that solve $xx = 0$.	Series 22 Size 28
$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} $ $A = Span \left\{ \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 3$	
spon of the columns of A	
Subspace of \mathbb{R}^3 $M = rows$	
Sune A	[=1/[-1/0] 10 D > 1
	-1
and the second of the second o	1.8.11.6/1.6.0.
Soms to Axzo homogeneous	
System of coeff patrix A.	
A= (101110) ~ (101122) X= r -1/45	$\begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix} \star \begin{pmatrix} 0 \\ -3 \\ 0 \end{bmatrix}$
01123	
$\chi_{c} = -c - s$	
12= - 5-3t \-5-5	5 - 21
X= (-5-0)	- · · · · · · · · · · · · · · · · · · ·
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$\mathcal{X}_5=$ t	
C	yes NWA crosed
Jaim Wild is a supspace	a Ondes . 11.
Proof JUNEMUA 3 VIWENMA	? Condes add ? Condes add ? Condes add Scalar mut
Just ENWA STORW	Scardy V
$\Delta = \langle \hat{a}_{1}, \hat{a}_{2} \rangle = \Delta \hat{a}_{1}$	- A3=0+0 =0 J
$\bigcirc \bigvee_{i \in \mathcal{I}} \mathcal{I}_{i} = \bigcap_{i \in \mathcal{I}} \bigvee_{i \in \mathcal{I}_{i}} \mathcal{I}_{i} = \bigcap_{i \in \mathcal{I}_{i}} $	10 29 Propried
	Sicrement
$ \begin{array}{ccc} O, \omega & \text{Evan } A & \text{Since } A \\ O & A & = \delta & \text{O} \\ O & A & = \delta & \text{O} \end{array} $ $ \begin{array}{cccc} O, \omega & \text{Evan } A & \text{Since } A \\ O & A & = \delta & \text{O} \end{array} $ $ \begin{array}{cccc} A & \text{Cor} & = C \\ O & \text{Cor} & = C \end{array} $	At= 0.0= 0

- b) Construct a basis for H

Example


Construct a basis for Nul
$$A$$
 and a basis for $ColA$.

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$


Nul A = Span { [-2] | [-2] |

A these 3 vectors

Col A= Span
$$\left\{ \begin{bmatrix} -3\\ z \end{bmatrix}, \begin{bmatrix} -1\\ z \end{bmatrix} \right\}$$

- a. The zero vector is in H.
- b. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- c. For each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

FIGURE 1

Span $\{v_1, v_2\}$ as a plane through the origin.

Theorem
The pivotal columns a matrix A form a basis for the Column space of A.

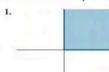
Theorem

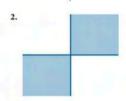
Suppose that the matrix A has reduced echelon form $\begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$, in block matrix form. Then a basis of the Null space of A is given by the columns of $\begin{bmatrix} F \\ -I \end{bmatrix}$.

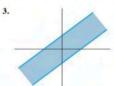
The assumption says that the first few columns are pivotal, and the last few are all free. This can be assumed, after the exchange of columns.

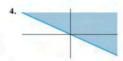
Additional Example (if time permits)

Let $V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \mid ab = 0 \right\}$. Is V a subspace?


EXAMPLE 6 Find a basis for the null space of the matrix


$$\mathbf{1} = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$




2.8 EXERCISES

Exercises 1–4 display sets in \mathbb{R}^2 . Assume the sets include the bounding lines. In each case, give a specific reason why the set H is not a subspace of \mathbb{R}^2 . (For instance, find two vectors in H whose sum is not in H, or find a vector in H with a scalar multiple that is not in H. Draw a picture.)

5. Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 8 \\ 2 \\ -9 \end{bmatrix}$. Determine if \mathbf{w} is in the subspace of \mathbb{R}^3 generated by \mathbf{v}_1 and \mathbf{v}_2 .

6. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ -7 \\ 9 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 5 \\ -8 \\ 6 \\ 5 \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} 5 \\ -8 \\ 6 \end{bmatrix}$

$$\begin{bmatrix} -4 \\ 10 \\ -7 \\ -5 \end{bmatrix}. \text{ Determine if } \mathbf{u} \text{ is in the subspace of } \mathbb{R}^4 \text{ generated}$$
 by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$

7. Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -8 \\ 6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 8 \\ -7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -4 \\ 6 \\ -7 \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} 6 \\ -10 \\ 11 \end{bmatrix}$, and $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

- a. How many vectors are in {v₁, v₂, v₃}?
- b. How many vectors are in Col A?
- c. Is p in Col A? Why or why not?

8. Let
$$\mathbf{v}_1 = \begin{bmatrix} -3 \\ 0 \\ 6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ -6 \\ 3 \end{bmatrix}$, and $\mathbf{p} = \begin{bmatrix} 1 \\ 14 \\ 0 \end{bmatrix}$. Determine if \mathbf{p} is in Col A, where $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

- 9. With A and p as in Exercise 7, determine if p is in Nul A.
- With u = (-2, 3, 1) and A as in Exercise 8, determine if u is in Nul A.

In Exercises 11 and 12, give integers p and q such that Nul A is a subspace of \mathbb{R}^p and Col A is a subspace of \mathbb{R}^q .

11.
$$A = \begin{bmatrix} 3 & 2 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1 \end{bmatrix}$$

$$\mathbf{12.} \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ -5 & -1 & 0 \\ 2 & 7 & 11 \end{bmatrix}$$

- For A as in Exercise 11, find a nonzero vector in Nul A and a nonzero vector in Col A.
- For A as in Exercise 12, find a nonzero vector in Nul A and a nonzero vector in Col A.

Determine which sets in Exercises 15–20 are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify each answer.

15.
$$\begin{bmatrix} 5 \\ -2 \end{bmatrix}, \begin{bmatrix} 10 \\ -3 \end{bmatrix}$$
 16. $\begin{bmatrix} -4 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ 17. $\begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ -7 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix}$ 18. $\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -5 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ -5 \end{bmatrix}$ 19. $\begin{bmatrix} 3 \\ -8 \end{bmatrix}, \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

20.
$$\begin{bmatrix} 1 \\ -6 \\ -7 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ -4 \\ 7 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 7 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 8 \\ 9 \end{bmatrix}$

In Exercises 21 and 22, mark each statement True or False. Justify each answer

- 21. a. A subspace of \mathbb{R}^n is any set H such that (i) the zero vector is in H, (ii) \mathbf{u} , \mathbf{v} , and $\mathbf{u} + \mathbf{v}$ are in H, and (iii) c is a scalar and on is in H.
 - b. If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in \mathbb{R}^n , then Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the same as the column space of the matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p]$.
 - c. The set of all solutions of a system of m homogeneous equations in n unknowns is a subspace of \mathbb{R}^m .
 - d. The columns of an invertible $n \times n$ matrix form a basis for R" e. Row operations do not affect linear dependence relations
- among the columns of a matrix.
- 22. a. A subset H of R" is a subspace if the zero vector is in H.
 - b. Given vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n , the set of all linear combinations of these vectors is a subspace of \mathbb{R}^n .
 - c. The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^n .
 - d. The column space of a matrix A is the set of solutions of $A\mathbf{x} = \mathbf{b}$.
 - e. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.

Exercises 23-26 display a matrix A and an echelon form of A. Find a basis for Col A and a basis for Nul A.

23.
$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 6 & -5 \\ 0 & 1 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

24.
$$A = \begin{bmatrix} -3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 6 & 9 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

25.
$$A = \begin{bmatrix} 1 & 4 & 8 & -3 & -7 \\ -1 & 2 & 7 & 3 & 4 \\ -2 & 2 & 9 & 5 & 5 \\ 3 & 6 & 9 & -5 & -2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 4 & 8 & 0 & 5 \\ 0 & 2 & 5 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

26.
$$A = \begin{bmatrix} 3 & -1 & 7 & 3 & 9 \\ -2 & 2 & -2 & 7 & 5 \\ -5 & 9 & 3 & 3 & 4 \\ -2 & 6 & 6 & 3 & 7 \end{bmatrix}$$

$$\sim \begin{bmatrix} 3 & -1 & 7 & 0 & 6 \\ 0 & 2 & 4 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

0 0 0

0 27. Construct a nonzero 3 × 3 matrix A and a nonzero vector b such that b is in Col A, but b is not the same as any one of the columns of A.

0

- 28. Construct a nonzero 3×3 matrix A and a vector b such that b is not in Col A.
- 29. Construct a nonzero 3 × 3 matrix A and a nonzero vector b such that b is in Nul A.
- 30. Suppose the columns of a matrix $A = [\mathbf{a}_1 \cdots \mathbf{a}_p]$ are linearly independent. Explain why $\{a_1, \dots, a_p\}$ is a basis for

In Exercises 31-36, respond as comprehensively as possible, and justify your answer. 31. Suppose F is a 5×5 matrix whose column space is not equal

- to \mathbb{R}^5 . What can you say about Nul F? 32. If R is a 6×6 matrix and Nul R is not the zero subspace, what
- can you say about Col R? 33. If Q is a 4×4 matrix and Col $Q = \mathbb{R}^4$, what can you say about
- solutions of equations of the form $Q\mathbf{x} = \mathbf{b}$ for \mathbf{b} in \mathbb{R}^4 ? 34. If P is a 5×5 matrix and Nul P is the zero subspace, what can you say about solutions of equations of the form $P \mathbf{x} = \mathbf{b}$ for b in R5?
- 35. What can you say about Nul B when B is a 5×4 matrix with linearly independent columns?
- 36. What can you say about the shape of an $m \times n$ matrix A when the columns of A form a basis for \mathbb{R}^m ?

[M] In Exercises 37 and 38, construct bases for the column space and the null space of the given matrix A. Justify your work.

37.
$$A = \begin{bmatrix} 3 & -5 & 0 & -1 & 3 \\ -7 & 9 & -4 & 9 & -11 \\ -5 & 7 & -2 & 5 & -7 \\ 3 & -7 & -3 & 4 & 0 \end{bmatrix}$$

38.
$$A = \begin{bmatrix} 4 & 1 & 2 & -8 & -9 \\ 5 & 1 & 3 & 5 & 19 \\ -8 & -5 & 6 & 8 & 5 \end{bmatrix}$$

Column Space and Null Space

WEB A Basis for Col A