$$
\left.\binom{1 / 2}{y_{2}^{2}} \right\rvert\,\left\{\begin{array}{l}
14 \pi \\
14 n
\end{array}\right)=? ?
$$

Section 5.2 : The Characteristic Equation
Chapter S: Eigenvalues and Eigenvectors
Math Iss Linear Algebra

Ruletto
Topics
We will cover these topics in this section.

1. The characteristic polynomial of a matrix

Algebraic and geometric multiplicity of eigenvalues

Objectives
For the topic \qquad

1. Construct the characteristic polynomial of a matrix and use it to
identify eigenvalues and their multiplicities.
2. Characterize the long-term behaviour of dynamical systems using
eigenvalue decompositions.

NAt. E-value:

How to find the λ 's? The Characteristic Polynomial

Recall:
λ is an eigenvalue of $A \Leftrightarrow(A-\lambda A)$ is not invertible Therefore, to calculate the eigenvalues of A, we can

$$
\operatorname{det}(A-\lambda I)=\mathbf{O}
$$

The quantify $\operatorname{dec}(A-\lambda I)=0$ is pe characteristic . A.
The roots of the characteristic polynomial are the li SenvaVit.
$\vec{A} \vec{x}=\lambda \vec{x} \quad(x \neq 0)$
$\Leftrightarrow(A-\lambda I) \vec{x}=0 \quad(x \neq 0)$
$\tau_{\text {matisse has }}$
a fire nor

$$
\begin{aligned}
& P(\lambda)=\operatorname{det}(A-\lambda I) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& (a-b)=-(b-a)=\sqrt{2}^{2}-6 h+1 \quad \text { is the } \\
& \begin{aligned}
\lambda=\frac{6 \pm \sqrt{36-4}}{2} & =3 \pm \frac{\sqrt{32}}{2} \\
& =3 \pm \frac{\sqrt{16 \cdot 2}}{2}=3 \pm \frac{4 \sqrt{2}}{2} \\
& =3 \pm 2 \sqrt{2}
\end{aligned}
\end{aligned}
$$

So FAr
pean.

* $A \vec{x}=\Delta \vec{x} \quad \vec{x} \neq \overrightarrow{0}$.
* How to and \ddot{x}^{\prime} 's if I tel you d's.

$$
=\operatorname{det}\left(\begin{array}{cc}
5-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right)
$$

$$
A-3 I \sim \cdots
$$

$$
=(5-x)(1-x)-4
$$

parinatito form

$$
=(-1)^{2}(\lambda-5)(\lambda-1)-4
$$

$$
=\lambda^{2}-6 \lambda+5-4
$$

$+\operatorname{Nul}(A-\lambda I)$ D-eizenspace.

Ex.

$$
\begin{array}{rlrl}
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] & P(\delta) & =\operatorname{det}\left[\begin{array}{cc}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right] \\
p & =\lambda^{2}+1 \\
& =(\lambda-i)(\lambda+i)=0 \\
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} & & \\
b= \pm i
\end{array}
$$

Characteristic Polynomial of 2×2 Matrices
"- (tace $M=a+d$
in terms of its determinant. What is the equation when M is singular?

$$
P(\lambda)=\operatorname{det}\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right]
$$

$A(5 \times 5)$
Algebraic Multiplicity
$P(\lambda)=-(\lambda-2)(\lambda-2)(\lambda+4)(\lambda-5)(\lambda+7)$

Example

$$
=(a-d)(a-d)-b c
$$

$$
=(\lambda-a)(\lambda-d)-b c
$$

$$
=d^{2}-\frac{(a+d)}{d} \lambda+\frac{a d-b c}{d}
$$

$$
\left.=\lambda^{2}-t_{0}(M) \lambda+\operatorname{bet}(M)\right]
$$

ample
mute the algebraic multiplicities of the eigenvalues for the matrix
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
$\operatorname{det}(A-I)=\operatorname{det}\left[\begin{array}{cccc}1-\lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1-2 & 0 \\ 0 & 0 & 0 & -i\end{array}\right]=(\lambda-\lambda)(-1-1)(\lambda+1) \lambda^{2}=0$

$$
\underbrace{\lambda_{1}=1, \lambda_{2}=-1, \lambda_{3}=0, \lambda_{y}=0}_{\text {alg } 1} \frac{1}{1}
$$

4
$p(\lambda)=\lambda^{2}-6 \lambda+1$
$\xrightarrow{\text { Geometric Multiplicity }} \mathrm{a}$

of $\operatorname{Null}(A-\lambda I)$.

1. Geometric multiplicity is always at least 1 . It can be smaller than
2. Here is the basic example

$$
A=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \text { rs }\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]=B
$$

$\lambda=0$ is the only eigenvalue. Its algebraic multi
geometric multiplicity is 1 .
3. FACT alg \geqslant geo

Ex. $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right] \quad B=\left[\begin{array}{ll}302 \\ 3 & 0 \\ 0 & 3\end{array}\right]$

Example
 Make a matux

$$
\begin{gathered}
\text { 0/ geo malt. } \\
\text { that you } \\
\text { want. }
\end{gathered}
$$

$$
\left.\begin{array}{rl}
p(x) & =0=0-1 \\
3-\lambda & 1 \\
0 & 3-\lambda
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{stan} k=1
\end{aligned}
$$

Q(1) eigenvalue? $\lambda=3$ only eigenvalue for A \& B
(z) alg? algebraic mutitpricion is 2 for both $A\{B$.
(3) geo?

$$
\begin{aligned}
& A-3 I=\left[\begin{array}{cc}
0^{L^{s}} & 1 \\
0 & 0
\end{array}\right] \quad \vec{x}=s\binom{1}{0} \text { goo mut. к } 1 \text {. for } A \\
& B-3 I=\left(\begin{array}{ll}
d^{4} d^{t} \\
0 & 0
\end{array}\right) \vec{x}=s\binom{1}{0}+t\binom{0}{1} \text { geo multi is } 2 \text { for } B
\end{aligned}
$$

Ex. Construct A w/ [HARD]

$$
\begin{array}{lll}
\lambda_{1}=3 & \operatorname{alg} 3 & \text { geo } 2 \mathrm{~J} \\
\lambda_{2}=1 & \operatorname{alg} 1 & \text { geo } 1:
\end{array}
$$

$$
\left.A=\left[\begin{array}{llll}
3 & 0 & 1 & 1 \\
0 & 3 & 1 & 1 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
A=3 \\
A-3 I= \\
A=1 \\
A-I=
\end{array} \begin{array}{cccc}
\downarrow & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -2
\end{array}\right]\left[\begin{array}{llll}
(2) & 0 & 1 & 1 \\
0 & (2) & 1 & 1 \\
0 & 0 & (2) & 1 \\
0 & 0 & 0 & 0 \\
g o c c c
\end{array}\right]
$$

Recall: Long-Term Behavior of Markov Chains

Recall:

- We often want to know what happens to a Markov Chain

$$
\vec{x}_{k+1}=P_{\vec{x}_{k}}, \quad k=0,1,2, \ldots
$$

as $k \rightarrow \infty$

- If P is regular, then there is a

Now lets ask

- If we don't know whether P is regular, what else might we do to describe the long-term behavior of the system?
- What can eigervalues tell us about the behavior of these systems?

Example: Eigenvalues and Markov Chains

Note: the textbook has a similar example that you can review.

Consider the Markov Chain:

$$
\vec{x}_{k+1}=P \vec{x}_{k}=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.4 & 0.6
\end{array}\right) \vec{x}_{k}, \quad k=0,1,2,3, \ldots, \quad \vec{z}_{0}=\binom{1}{0}
$$

This system can be represented schematically with two noder. A and B :

Goak: use eigenvalues to describe the long-term behavior of our system

What are the corresponding eigenvectors of P ?

Use the eigenvalues and eigenvectors of P to analyze the long-term ehaviour of the system. In other words, determine what \vec{x}_{4} tends to as
$t \rightarrow \infty$

Additional Examples (if time permits)
Definition
Two $n \times n$ matrices A and B are similar if there is a matrix P so that

1. True or false. $A=P B P^{-1}$
a) If A is similar to the identity matrix, then A is equal to the identity matrix.
b) A row replacement operation on a matrix does not change its eigenvalues.
2. For what values of k does the matrix have one real eigenvalue with algebraic multiplicity 2 ?

If time permits, we will explain or prove this theorem in lecture. Note:

- Our textbook introduces similar matrices in Section 5.2, but doesn't have exercises on this concept until 5.3.
- Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example.

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Soften 83 Stote20
A, B similar
${ }^{\text {True n Same risen values }}$
wo abs milt.
W/ geo same also.

If A is similar to I then $A=I$

$$
\text { Pros) } \quad A=P I P^{-1} \Rightarrow A=P P^{-1}=\Sigma \text {. so } A=I \text {. }
$$

5.2 Exercises

Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

1. $\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
2. $\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$
3. $\left[\begin{array}{ll}3 & -2 \\ 1 & -1\end{array}\right]$
4. $\left[\begin{array}{rr}4 & -3 \\ -4 & 2\end{array}\right]$
5. $\left[\begin{array}{rr}2 & 1 \\ -1 & 4\end{array}\right]$
6. $\left[\begin{array}{rr}1 & -4 \\ 4 & 6\end{array}\right]$
7. $\left[\begin{array}{rr}5 & 3 \\ -4 & 4\end{array}\right]$
8. $\left[\begin{array}{rr}7 & -2 \\ 2 & 3\end{array}\right]$

Exercises 9-14 require techniques from Section 3.1. Find the characteristic polynomial of each matrix using expansion across a row or down a column. [Note: Finding the characteristic polynomial of a 3×3 matrix is not easy to do with just row operations, because the variable λ is involved.]
9. $\left[\begin{array}{rrr}1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0\end{array}\right]$
10. $\left[\begin{array}{lll}0 & 3 & 1 \\ 3 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$
11. $\left[\begin{array}{rrr}4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2\end{array}\right]$
12. $\left[\begin{array}{rll}1 & 0 & 1 \\ -3 & 6 & 1 \\ 0 & 0 & 4\end{array}\right]$
13. $\left[\begin{array}{rrr}6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3\end{array}\right] \quad$ 14. $\left[\begin{array}{rrr}3 & -2 & 3 \\ 0 & -1 & 0 \\ 6 & 7 & -4\end{array}\right]$

For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.
15. $\left[\begin{array}{rrrr}4 & -7 & 0 & 2 \\ 0 & 3 & -4 & 6 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 0 & 1\end{array}\right] \quad$ 16. $\left[\begin{array}{rrrr}5 & 0 & 0 & 0 \\ 8 & -4 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 1 & -5 & 2 & 1\end{array}\right]$
17. $\left[\begin{array}{rrrrr}3 & 0 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 & 0 \\ 3 & 8 & 0 & 0 & 0 \\ 0 & -7 & 2 & 1 & 0 \\ -4 & 1 & 9 & -2 & 3\end{array}\right]$
18. It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ. Find h in the matrix A below such that the eigenspace for $\lambda=5$ is two-dimensional:

$$
A=\left[\begin{array}{rrrr}
5 & -2 & 6 & -1 \\
0 & 3 & h & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

19. Let A be an $n \times n$ matrix, and suppose A has n real cigenvalwes, $\lambda_{1} \ldots, \lambda_{\mathrm{n}}$, repeated according to multiplicities, so that $\operatorname{det}(\lambda-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$

In Exercises 21-30, A and B are $n \times n$ matrices. Mark each statement True or False (T/F). Justify each answer.
21. (T/F) If 0 is an eigenvalue of A, then A is invertible.
22. (T/F) The zero vector is in the eigenspace of A associated with an eigenvalue λ.
23. (T/F) The matrix A and its transpose, A^{T}, have different sets of eigenvalues.
24. (T/F) The matrices A and $B^{-1} A B$ have the same sets of eigenvalues for every invertible matrix B.
25. (T/F) If 2 is an eigenvalue of A, then $A-2 I$ is not invertible.
26. (T/F) If two matrices have the same set of eigenvalues, then they are similar.
27. (T/F) If $\lambda+5$ is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.
28. (T/F) The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A.
29. (T/F) The eigenvalue of the $n \times n$ identity matrix is 1 with algebraic multiplicity n.
30. (T/F) The matrix A can have more than n eigenvalues.

Midterm 2 Lecture Review Activity, Math 1554

1. (3 points) T_{A} is the linear transform $x \rightarrow A x, A \in \mathbb{R}^{2 \times 2}$, that projects points in \mathbb{R}^{2} onto the x_{2}-axis. Sketch the nullspace of A, the range of the transform, and the column space of A. How are the range and column space related to each other?
(a) $\operatorname{Null}(A)$

(b) range of T_{A}

$$
\begin{aligned}
& A=\left[T\left(e_{1}\right) T\left(e_{2}\right)\right]= {\left[\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right] \quad \begin{array}{c}
\text { stander } \\
\text { montrix }
\end{array} } \\
& \sim\left[\begin{array}{ll}
0^{d^{s}} & 1 \\
0 & 0
\end{array}\right] \quad \text { RREF of } A \\
& \vec{x}=s\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

$Q:$

$$
\text { ColA }=\text { "range ot } T^{\prime \prime}=\{\vec{b} \mid A \vec{x}=6 \text { is consistent }\}
$$

$$
A_{x}=x_{1}^{2} x_{1}^{2}+x_{2} V_{-} \quad A=\left(\vec{V} U_{1}\right.
$$

(c) $\operatorname{Col}(A)$

TR Spoon '23 A, B shore \bar{x} eifanentor $/ \lambda$ then 2d: eisenclue of $A+\infty$

T/F Fill '22 2×2 sea

$$
\operatorname{det}(-A)=-\operatorname{det} A
$$

\#9 Fall 2022 given v_{1}, v_{2}, v_{3} $\dot{\psi} \lambda_{1}, \lambda_{e}, \lambda_{3}$
answer some
questions about A.
2. Indicate true if the statement is true, otherwise, indicate false.
(a) $S=\left\{\vec{x} \in \mathbb{R}^{3} \mid x_{1}=\right.$ 重 $\left.x_{2}=4, x_{3}=x_{1} x_{2}\right\}$ is a subspace for-any $a \subseteq \mathbb{R}$

Ex.
b) ff A is square and non-zero, and $A \vec{x}=A \vec{y}$ for some $\vec{x} \neq \vec{y}$, then $\operatorname{det}(A) \neq 0$.

For example one vector on S is

$$
x=\left(\begin{array}{l}
1 \\
4 \\
4
\end{array}\right)
$$

any other vectors in S ?
So S is the set $\left\{\left(\begin{array}{l}1 \\ 4 \\ 4\end{array}\right]\right\}$.
δ is NoT a subspace.
3. If possible, write down an example of a matrix or quantity with the given properties. If it is 1$) \in \operatorname{Nul} A$. not possible to do so, write not possible.
(a) A is $2 \times 2, \operatorname{Col} A$ is spanned by the vector $\binom{2}{3}$ and $\operatorname{dim}(\operatorname{Null}(A))=1 . A=\left(\begin{array}{ll}2 & 6 \\ 3 & 9\end{array}\right)$
$\operatorname{CoI} A=\operatorname{span}\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$
(b) A is $2 \times 2, \mathrm{Col} A$ is spanned by the vector $\binom{2}{3}$ and $\operatorname{dim}(\operatorname{Null}(A))=0 . A=(1 \mathrm{P}$
(c) A is in RREF and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. The vectors u and v are a basis for the range of \mathcal{P}.

$$
\left.\begin{array}{l}
u=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), v=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), A=\left(\begin{array}{l}
1 \\
1
\end{array} 0\right. \\
0 \\
0 \\
0
\end{array}\right)
$$

cols could' be

$$
\binom{1}{3 / 2},\left(\begin{array}{c}
2 / 3 \\
1
\end{array} \left\lvert\,,\left[\begin{array}{l}
20 \\
30
\end{array}\right)\right.\right.
$$

same as.
range

$$
\binom{2}{3}\binom{-2}{-3}
$$ $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ also al.

5. (2 points) Fill in the blanks.
(a) If A is a 6×4 matrix in RREF and $\operatorname{rank}(A)=4$, what is the rank of A^{T} ? \square
(b) $T_{A}=A \vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^{2} clockwise by π radians about the origin, then scales their x-component by a factor of 3 , then Δ projects them onto the x_{1}-axis. What is the value of $\operatorname{det}(A)$?
Step $1:$
$A=\left[T\left(e_{1}\right) \cdot T\left(e_{2}\right)\right]$ tan Step z: $\operatorname{det} A=?$
thine geometries.

rotates frit area still 1.
Then scale by 3 area now 3. Then project, area IS
6. (3 points) A virus is spreading in a lake. Every week,

- 20% of the healthy fish get sick with the virus, while the other healthy fish remain healthy but could get sick at a later time.
- 10% of the sick fish recover and can no longer get sick from the virus, 80% of the sick fish remain sick, and 10% of the sick fish die.

Initially there are exactly 1000 fish in the lake.
a) What is the stochastic matrix, P, for this situation? Is P regular?
b) Write down any steady-state vector for the corresponding Markov-chain.
6. (3 points) A virus is spreading in a lake. Every week,

- 20% of the healthy fish get sick with the virus, while the other healthy fish remain healthy but could get sick at a later time.
- 10% of the sick fish recover and can no longer get sick from the virus, 80% of the sick fish remain sick, and 10% of the sick fish die.

Initially there are exactly 1000 fish in the lake.
a) What is the stochastic matrix, P, for this situation? Is P regular?
b) Write down any steady-state vector for the corresponding Markov-chain.

$$
P^{2} \vec{r}_{1}=P * P \vec{r}_{1}=P * \overrightarrow{0}=\overrightarrow{0}
$$

Midterm 2 Make-up. Your initials: \qquad
9. (6 points) Show all work for problems on this page.

$$
P^{2} \vec{v}_{2}=P+P \vec{v}_{2}=P \times\left(\frac{1}{2} \vec{v}_{2}\right)=\left(\frac{1}{2}\right)^{2} \vec{v}_{2}
$$

Consider the Markov chain $\vec{x}_{k+1}=P \vec{a}_{k, h}, h=0,1,2, \ldots$ e T er
Suppose P has eigenvalues $\lambda_{1}=0, \lambda_{2}=1 / 2$ and $\lambda_{3}=1$. Let \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} be eigenvectors corresponding to λ_{1}, λ_{2}, and λ_{2}, respectively:

Note: you may leave your answers as lineancombinations of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
(i) If $\vec{x}_{0}=\frac{1}{6} \vec{v}_{1}+\frac{1}{3} \vec{v}_{2}+\frac{1}{2} \vec{v}_{3}$, then what is \vec{x}_{2} ?

$$
\begin{aligned}
& \vec{X}_{2}=P \vec{X}_{1}=P^{2} \vec{X}_{0}=P^{2}\left(\frac{1}{6} \vec{V}_{6}+\frac{1}{3}\left(\vec{V}_{2}+\frac{1}{2} \vec{V}_{3}\right) \quad \vec{x}_{2}=\frac{1}{12} \vec{V}_{2}+\frac{1}{2} \vec{V}_{3}\right. \\
& =\frac{1}{6} P^{2} V_{1}^{2}+\frac{1}{3} P^{2} \vec{V}_{2}+\frac{1}{2} P^{2} \vec{v}_{3}=0+\frac{1}{3} \cdot\left(\frac{1}{2}\right)^{2} V_{2}+\frac{1}{2} V_{5}
\end{aligned}
$$

(ii) If $\vec{x}_{0}=\left(\begin{array}{l}1 / 4 \\ 1 / 2 \\ 1 / 4\end{array}\right)$, then what is \vec{x}_{1} ?
rows red -Hint: write \vec{c}_{0} as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
$\left[\vec{V}_{1} \vec{V}_{2} \vec{U}_{3} \mid \vec{X}_{1}\right]$ to find the weights

$$
\vec{x}_{1}=\frac{1}{8} \vec{v}_{\varepsilon}+\frac{1}{2} \vec{v}_{3}
$$

$$
\left(\begin{array}{rrr|r}
-1 & 0 & 1 & 1 / 4 \\
1 & -1 & 1 & 1 / 2 \\
0 & 1 & 0 & 1 / 4
\end{array}\right) \vee\left(\begin{array}{lll|l}
1 & 0 & 0 & 1 / 4 \\
0 & 1 & 0 & 1 / 4 \\
0 & 0 & 1 & 1 / 2
\end{array}\right)
$$

$$
\dot{x}_{0}=\frac{1}{G_{4}} \vec{v}_{i}+\frac{1}{4} V_{2}+\frac{1}{2} \vec{V}_{3} \Rightarrow P \dot{X}_{0}=\frac{1}{4} \cdot 0 V_{1}+\frac{1}{4}=\frac{1}{2} \hat{V}_{2}+\frac{1}{2} 1_{3}^{2}
$$

(iii) If $\vec{x}_{0}=\left(\begin{array}{l}1 / 4 \\ 1 / 2 \\ 1 / 4\end{array}\right)$, then what is \vec{x}_{k} as $k \rightarrow \infty$?

$$
x_{0}=\frac{1}{4}\left(\frac{1}{2}\right)^{k} \vec{v}_{2}+\frac{1}{2} v_{3}
$$

$$
\lim _{k \rightarrow \infty} \vec{x}_{k}=\frac{1}{2} \stackrel{\rightharpoonup}{3}_{3}
$$

$$
\rightarrow \vec{V}_{2}+\frac{1}{2} \vec{V}_{3}
$$

Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices
2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following

1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix.
2. Apply diagonalization to compute matrix powers.
 Course Schedule

Section 5.3 : Diagonalization

Chapter 5: Eigenvalues and Eigenvectors Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example A^{4}, for large k.

But: multiplying two $n \times n$ matrices requires roughly n^{3} computations. Is there a more efficient way to compute A^{t} ?

Topics and Objectives
Topics

1. Diagonal, similar, and diagonalizable matrices
2. Diagonalizing matrices

Learning Objectives
For the topics covered in this section, students are expected to be able to do the following.

1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix
2. Apply diagonalization to compute matrix powers.

TH

Diagonal Matrices
A matrix is diagonal if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad[2], \quad I_{n}, \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

We'll only be working with diagonal square matrices in this course.

$$
\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right] \quad\left[\begin{array}{cc}
\pi & 0 \\
0 & \sqrt[3]{12}
\end{array}\right]
$$

Powers of Diagonal Matrices
If A is diagonal, then A^{k} is easy to compute. For example,

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
3 & 0 \\
0 & 0.5
\end{array}\right) \\
& A^{2}=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 2
\end{array}\right)\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 2
\end{array}\right)=\left[\begin{array}{ll}
9 & 0 \\
0 & 1 / 4
\end{array}\right) \\
& A^{k}=\left[\begin{array}{cc}
3^{k} & 0 \\
0 & (1 / 2)^{k}
\end{array}\right]
\end{aligned}
$$

$\overbrace{}^{\text {But what if } A \text { is not diagonal? }} 77$

$$
\text { in geneal } \underbrace{(A k)}_{\text {hard }}=\left(P D P^{k}\right)^{\left(P D P^{-} \ldots P D P^{1}\right.} \underset{k \text { tines } .}{(A)}
$$

$$
=P D^{r} P^{1} e^{a s} y
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right]^{3}} & =\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left(\begin{array}{cc}
3^{3} & 0 \\
0 & 13
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)^{-1} \\
& =\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
27 & 0 \\
0 & 1
\end{array}\right] \frac{1}{2}\left[\left.\begin{array}{cc}
1 & 1 \\
-1
\end{array} \right\rvert\,\right.
\end{array}\right)=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left[\begin{array}{cc}
27 & 27 \\
-1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]^{3}=\left(\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)^{-6}\right)^{3}} \\
& A=P D P^{-1} \\
& =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)^{-1}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)^{-1}\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =P D D D P^{-1}=p D^{3} P^{-1}
\end{aligned}
$$

Diagonalization
Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is diagonalizatle if it is similar to a diagonal matrix D. That is, we can write

$$
A=P D P^{-1}
$$

Distinct Eigenvalues

Theorem
If A is $n \times n$ and has n distinct eigenvalues, then A is diagonalizable.

Is it necessary for an $n \times n$ matrix to have n distinct eigenvalues for it to be diagonalizable?

Non-Distinct Eigenvalues

$$
\begin{aligned}
& \text { Theorem. Suppose } \\
& \text { - } A \text { is } n \times n \\
& \text { - } A \text { has distinct eigenvalues } \lambda_{1}, \ldots, \lambda_{k}, k \leq n \\
& \text { - } a_{i}=\text { algebraic multiplicity of } \lambda_{i} \\
& \text { - } d_{i}=\text { dimension of } \lambda_{i} \text { eigenspace ("geometric multiplicity") } \\
& \text { Then } \\
& \text { 1. } d_{i} \leq a_{i} \text { for all } i \\
& \text { 2. } A \text { is diagonalizable } \Leftrightarrow \Sigma d_{i}=n \Leftrightarrow d_{i}=a_{i} \text { for all } i \\
& \text { 3. } A \text { is diagonalizable } \Leftrightarrow \text { the eigenvectors, for all eigenvalues, together } \\
& \text { form a basis for } \mathbb{R}^{n} \text {. }
\end{aligned}
$$

Note: the symbol \Leftrightarrow means " if and only if "
Also note that $A=P D P^{-1}$ if and only if
you need
where $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in order).

Game

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & 1 \\
v_{1} & \ldots \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
\vdots & & \lambda_{n} \\
0 & & \lambda_{n}
\end{array}\right]\left[(1,1)^{-1}\right. \\
& \text { columns } \begin{array}{c}
\text { eigenvalues dayonal: } \\
\text { on }
\end{array} \\
& \text { ave } \\
& \text { O's elsewure }
\end{aligned}
$$

$A=P B P^{-1}$ A similar to B.

$$
\begin{align*}
& \left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)=P D P^{-1} \tag{array}\\
& \lambda_{1}=2 \quad A-2 I=\left[\begin{array}{cc}
0 & 6 \\
0 & -3
\end{array}\right] \sim\left[\begin{array}{cc}
b^{s} \\
0 & 1 \\
0 & 0
\end{array}\right) \quad \bar{x}=s\left(\left.\begin{array}{l}
1 \\
0
\end{array} \right\rvert\,\right. \\
& \lambda_{2}=-1 \quad A-(-1) I=\left(\begin{array}{ll}
3 & 6 \\
0 & 0
\end{array}\right) \sim\left[\begin{array}{cc}
1 & c^{s} \\
0 & 0
\end{array}\right)^{s} x=s\binom{-2}{1} \\
& A=\left(\begin{array}{cc}
2 & 6 \\
0 & -1
\end{array}\right)=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & -2 \\
0 & 1
\end{array}\right)^{-1}
\end{align*}
$$

Pa diagondization of A

The eigenvalues of A are $\lambda=3,1$. If possible, construct P and D such that $A P=P D$.

$$
A=\left(\begin{array}{ccc}
7 & 4 & 16 \\
2 & 5 & 8 \\
-2 & -2 & -5
\end{array}\right)
$$

Note that

$$
\vec{x}_{k}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \vec{x}_{k-1}, \quad \vec{z}_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k=1,2,3, \ldots
$$

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the $n^{\text {th }}$

 number in this sequence.
Note that

$$
\vec{x}_{k}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \vec{x}_{k-1}, \quad \vec{x}_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k=1,2,3, \ldots
$$

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the $n^{\text {th }}$ number in this sequence.

The Diagonalization Theorem
An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

EXAMPLE 4 Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{rrr}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1} \ldots . . \lambda_{p}$.
a. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
b. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if (i) the characteristic polynomial factors completely into linear factors and (ii) the dimension of the eigenspace for each λ_{k} equals the multiplicity of λ_{k}.
c. If A is diagonalizable and \mathcal{B}_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $\mathcal{B}_{1} \ldots \ldots \mathcal{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}.

5.3 EXERCISES

In Exercises 1 and 2, let $A=P D P^{-1}$ and compute A^{4}.

1. $P=\left[\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right], D=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
2. $P=\left[\begin{array}{rr}2 & -3 \\ -3 & 5\end{array}\right], D=\left[\begin{array}{rr}1 & 0 \\ 0 & 1 / 2\end{array}\right]$

In Exercises 3 and 4, use the factorization $A=P D P^{-1}$ to compute A^{k}, where k represents an arbitrary positive integer.
3. $\left[\begin{array}{rr}a & 0 \\ 3(a-b) & b\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -3 & 1\end{array}\right]$
4. $\left[\begin{array}{rr}-2 & 12 \\ -1 & 5\end{array}\right]=\left[\begin{array}{ll}3 & 4 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}-1 & 4 \\ 1 & -3\end{array}\right]$

In Exercises 5 and 6, the matrix A is factored in the form $P D P^{-1}$, Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.
5. $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]=$
$\left[\begin{array}{rrr}1 & 1 & 2 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{rrr}5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 / 4 & 1 / 2 & 1 / 4 \\ 1 / 4 & 1 / 2 & -3 / 4 \\ 1 / 4 & -1 / 2 & 1 / 4\end{array}\right]$
6. $\left[\begin{array}{rrr}4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5\end{array}\right]=$
$\left[\begin{array}{rrr}-2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{rrr}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{rrr}0 & 0 & 1 \\ 2 & 1 & 4 \\ -1 & 0 & -2\end{array}\right]$
Diagonalize the matrices in Exercises 7-20, if possible. The eigenvalues for Exercises 11-16 are as follows: (11) $\lambda=1,2,3$; (12) $\lambda=2,8$; (13) $\lambda=5,1$; (14) $\lambda=5,4$; (15) $\lambda=3,1$; (16) $\lambda=2,1$. For Exercise 18, one eigenvalue is $\lambda=5$ and one eigenvector is ($-2,1,2$).
7. $\left[\begin{array}{rr}1 & 0 \\ 6 & -1\end{array}\right]$
8. $\left[\begin{array}{ll}5 & 1 \\ 0 & 5\end{array}\right]$
9. $\left[\begin{array}{rr}3 & -1 \\ 1 & 5\end{array}\right]$
10. $\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$
11. $\left[\begin{array}{rrr}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$
12. $\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right]$
13. $\left[\begin{array}{rrr}2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2\end{array}\right]$
14. $\left[\begin{array}{rrr}4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5\end{array}\right]$
15. $\left[\begin{array}{rrr}7 & 4 & 16 \\ 2 & 5 & 8 \\ -2 & -2 & -5\end{array}\right]$
17. $\left[\begin{array}{lll}4 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5\end{array}\right]$
19. $\left[\begin{array}{rrrr}5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$
16. $\left[\begin{array}{rrr}0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5\end{array}\right]$
18. $\left[\begin{array}{rrr}-7 & -16 & 4 \\ 6 & 13 & -2 \\ 12 & 16 & 1\end{array}\right]$
20. $\left[\begin{array}{llll}4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right]$

In Exercises 21 and $22, A, B, P$, and D are $n \times n$ matrices. Mark each statement True or False. Justify each answer. (Study Theorems 5 and 6 and the examples in this section carefully before you try these exercises.)
21. a. A is diagonalizable if $A=P D P^{-1}$ for some matrix D and some invertible matrix P.
b. If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
c. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
d. If A is diagonalizable, then A is invertible.
22. a. A is diagonalizable if A has n eigenvectors.
b. If A is diagonalizable, then A has n distinct eigenvalues.
c. If $A P=P D$, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
d. If A is invertible, then A is diagonalizable.
23. A is a 5×5 matrix with two eigenvalues. One eigenspace is three-dimensional, and the other eigenspace is twodimensional. Is A diagonalizable? Why?
24. A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A diagonalizable? Why?
25. A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is twodimensional. Is it possible that A is not diagonalizable? Justify your answer.
26. A is a 7×7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is threedimensional. Is it possible that A is not diagonalizable? Justify your answer.
27. Show that if A is both diagonalizable and invertible, then so is A^{-1}.
28. Show that if A has n linearly independent eigenvectors, then so does A^{T}. [Hint: Use the Diagonalization Theorem.]
29. A factorization $A=P D P^{-1}$ is not unique. Demonstrate this for the matrix A in Example 2. With $D_{1}=\left[\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right]$, use the information in Example 2 to find a matrix P_{1} such that $A=P_{1} D_{1} P_{1}^{-1}$.
30. With A and D as in Example 2, find an invertible P_{2} unequal to the P in Example 2, such that $A=P_{2} D P_{2}^{-1}$.
31. Construct a nonzero 2×2 matrix that is invertible but not diagonalizable.
32. Construct a nondiagonal 2×2 matrix that is diagonalizable but not invertible.
[M] Diagonalize the matrices in Exercises 33-36. Use your matrix program's eigenvalue command to find the eigenvalues, and then compute bases for the eigenspaces as in Section 5.1.
33. $\left[\begin{array}{rrrr}-6 & 4 & 0 & 9 \\ -3 & 0 & 1 & 6 \\ -1 & -2 & 1 & 0 \\ -4 & 4 & 0 & 7\end{array}\right]$
34. $\left[\begin{array}{rrrr}0 & 13 & 8 & 4 \\ 4 & 9 & 8 & 4 \\ 8 & 6 & 12 & 8 \\ 0 & 5 & 0 & -4\end{array}\right]$
35. $\left[\begin{array}{rrrrr}11 & -6 & 4 & -10 & -4 \\ -3 & 5 & -2 & 4 & 1 \\ -8 & 12 & -3 & 12 & 4 \\ 1 & 6 & -2 & 3 & -1 \\ 8 & -18 & 8 & -14 & -1\end{array}\right]$

