

31.7 Linear Independence In Exercises 11–14, find the value(s) of h for which the vectors (last example) are linearly dependent. Justify each answer. **11.** $\begin{bmatrix} 1\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\-5\\7 \end{bmatrix}, \begin{bmatrix} -1\\5\\h \end{bmatrix}$ **12.** $\begin{bmatrix} 2\\-4\\1 \end{bmatrix}, \begin{bmatrix} -6\\7\\-3 \end{bmatrix}, \begin{bmatrix} 8\\h\\4 \end{bmatrix}$ 5 Find proto ANS h=6 THM: JU, Je, Vz J linearly independent set or vectors if and only of The materix A= [V, V, V] has a pirot in every column A= (1 3 -1) ~ Riters (1 3 -1) -1 -5 5 ~ Riters (0 -2 4) -4 3 10 -48,18, - (0 -5 4+h) ~ = R2 - 0 0 - 2 0 0 - 5 4+b $\begin{array}{c} v \begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & -2 \\ \end{array} \end{array} \begin{array}{c} \text{If } h-6=0 \\ \text{True A has } 2 \end{bmatrix} \quad \text{In dep} \\ \begin{array}{c} \text{True A has } 2 \end{bmatrix} \quad \text{In dep} \\ \begin{array}{c} \text{True A has } 2 \end{bmatrix} \quad \text{In dep} \\ \begin{array}{c} \text{shears} \\ \text{evens} \end{array} \end{array}$ \$ 5(-2)+4+6 Then A has shin ind 3 pivots cost of A

1.7 EXERCISES

In Exercises 1-4, determine if the vectors are linearly indepen-0 -8 5 -4 -3 0 3 -7 4 0 -14 dent. Justify each answer. 5. -4 5 1 0 3 2 5 4 6 _3 2. 1. 0 4 0 5 4 3 0 -3 3 7. 5 1 7 .2 5 0 3. 1 In Exercises 9 and 10, (a) for what values of h is v_3 in

Span $\{\mathbf{v}_1, \mathbf{v}_2\}$, and (b) for what values of h is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly dependent? Justify each answer.

In Exercises 5-8, determine if the columns of the matrix form a linearly independent set. Justify each answer.

62 CHAPTER 1 Linear Equations in Linear Algebra

9.
$$\mathbf{v}_1 = \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3\\ 9\\ -6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 5\\ -7\\ h \end{bmatrix}$$

10. $\mathbf{v}_1 = \begin{bmatrix} 1\\ -5\\ -3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2\\ 10\\ 6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2\\ -9\\ h \end{bmatrix}$

In Exercises 11–14, find the value(s) of h for which the vectors are linearly dependent. Justify each answer.

12. -5 5 7 h 11. 13. 14.

Determine by inspection whether the vectors in Exercises 15-20 are linearly independent. Justify each answer.

15.
$$\begin{bmatrix} 5\\1 \end{bmatrix}, \begin{bmatrix} 2\\8 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} -1\\7 \end{bmatrix}$$
 16. $\begin{bmatrix} 4\\-2\\6 \end{bmatrix}, \begin{bmatrix} 6\\-3\\9 \end{bmatrix}$
17. $\begin{bmatrix} 3\\5\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} -6\\5\\4 \end{bmatrix}$ **18.** $\begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} -1\\3 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix}, \begin{bmatrix} 8\\1 \end{bmatrix}$
19. $\begin{bmatrix} -8\\12\\-4 \end{bmatrix}, \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$ **20.** $\begin{bmatrix} 1\\4\\-7 \end{bmatrix}, \begin{bmatrix} -2\\5\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}$

- 24. A is a 2×2 matrix with linearly dependent columns.
- **25.** A is a 4 \times 2 matrix, $A = [\mathbf{a}_1 \ \mathbf{a}_2]$, and \mathbf{a}_2 is not a multiple of a1.

-2

2

- **26.** A is a 4×3 matrix, $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$, such that $\{\mathbf{a}_1, \mathbf{a}_2\}$ is linearly independent and \mathbf{a}_3 is not in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.
- 27. How many pivot columns must a 7 × 5 matrix have if its columns are linearly independent? Why?
- 28. How many pivot columns must a 5×7 matrix have if its columns span ℝ5? Why?
- **29.** Construct 3×2 matrices A and B such that $A\mathbf{x} = \mathbf{0}$ has only the trivial solution and $B\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- 30. a. Fill in the blank in the following statement: "If A is an $m \times n$ matrix, then the columns of A are linearly independent if and only if A has pivot columns."

b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row operations. [Hint: Write $A\mathbf{x} = \mathbf{0}$ as a vector equation.]

31. Given
$$A = \begin{bmatrix} 2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1 \end{bmatrix}$$
, observe that the third column

is the sum of the first two columns. Find a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

6 3 32. Given A =-7 5 , observe that the first column In Exercises 21 and 22, mark each statement True or False. Justify each answer on the basis of a careful reading of the text.

- **21.** a. The columns of a matrix A are linearly independent if the equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution.
 - b. If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
 - c. The columns of any 4 × 5 matrix are linearly dependent.
 - d. If x and y are linearly independent, and if {x, y, z} is linearly dependent, then z is in Span {x, y}.
- 22. a. Two vectors are linearly dependent if and only if they lie on a line through the origin.
 - b. If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
 - c. If x and y are linearly independent, and if z is in Span {x, y}, then {x, y, z} is linearly dependent.
 - d. If a set in Rⁿ is linearly dependent, then the set contains more vectors than there are entries in each vector.

In Exercises 23–26, describe the possible echelon forms of the matrix. Use the notation of Example 1 in Section 1.2.

23. A is a 3×3 matrix with linearly independent columns.

plus twice the second column equals the third column. Find a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

Each statement in Exercises 33–38 is either true (in all cases) or false (for at least one example). If false, construct a specific example to show that the statement is not always true. Such an example is called a *counterexample* to the statement. If a statement is true, give a justification. (One specific example cannot explain why a statement is always true. You will have to do more work here than in Exercises 21 and 22.)

- **33.** If $\mathbf{v}_1, \ldots, \mathbf{v}_4$ are in \mathbb{R}^4 and $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly dependent.
- 34. If v_1,\ldots,v_4 are in \mathbb{R}^4 and $v_3=0,$ then $\{v_1,v_2,v_3,v_4\}$ is linearly dependent.
- **35.** If \mathbf{v}_1 and \mathbf{v}_2 are in \mathbb{R}^4 and \mathbf{v}_2 is not a scalar multiple of \mathbf{v}_1 , then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.
- 36. If v₁,..., v₄ are in R⁴ and v₃ is *not* a linear combination of v₁, v₂, v₄, then {v₁, v₂, v₃, v₄} is linearly independent.
- **37.** If $\mathbf{v}_1, \ldots, \mathbf{v}_4$ are in \mathbb{R}^4 and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is also linearly dependent.
- **38.** If $\mathbf{v}_1, \ldots, \mathbf{v}_4$ are linearly independent vectors in \mathbb{R}^4 , then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent. [*Hint*: Think about $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + 0 \cdot \mathbf{v}_4 = \mathbf{0}$.]

Section 1.8 : An Introduction to Linear Transforms

Chapter 1 : Linear Equations

Math 1554 Linear Algebra

1.8 : An Introduction to Linear Transforms

Topics

We will cover these topics in this section.

- 1. The definition of a linear transformation.
- The interpretation of matrix multiplication as a linear transformation.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- Construct and interpret linear transformations in Rⁿ (for example, interpret a linear transform as a projection, or as a shear).
- 2. Characterize linear transforms using the concepts of
 - ▹ existence and uniqueness
 - ▹ domain, co-domain and range

Week Dates Lecture Studio Lecture Studio Lecture 1.8 : An Introduction to Linear Transforms 1/8 - 1/12 1.1 WS1.1 1.2 WS1.2 1.3 Section 1.8 : An Introduction to Linear Topics We will cover these topics in this section. WS1.3 1/15 - 1/19 Break 1.4 WS1.4 1.5 Transforms The definition of a linear transformation.
 The interpretation of matrix multiplication as a linear transformation. 1/22 - 1/26 -17 WS1.5.1.7 WS1.8 1.9 3 1.8 Math 1954 Linear Alexhea ed in this section, stu ents are exp 1/29 - 2/21.9.2.1 WS1.9.2.1 Exam 1. Revie Cancelled Δ 2.2 Construct and interpret linear transformations in Rⁿ (for interpret a linear transform as a projection, or as a shear) ize linear transforms us ince and uniqueness iin, co-domain and range Exam 1 is ONE type of Function 15 6 WEEK from TODAY From Matrices to Functions Functions from Calculus Let A be an $m \times n$ matrix. We define a function Many of the functions we know have domain and code @ 6:30 pm evoress the rule that defines the function sin this way $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $T(\vec{v}) = A\vec{v}$ $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \sin(x)$ This is called a matrix transformation In calculus we often think of a function in terms of its e • The domain of T is Rⁿ. of a function in terms of its graph ain, and the vertical pois is the co • The co-domain or target of T is \mathbb{R}^m • The vector $T(\vec{x})$ is the image of \vec{x} under TRange of f 15 [-1,1] + The set of all possible images $T(\vec{x})$ is the range This gives us another interpretation of $A\vec{x} = \vec{b}$: T(x)=6 · set of equations (alam . ₽ · augmented matrix in R · matrix equation N Cinput · vector equation THE the domain is \mathbb{R}^2 and the codomain dimensions to draw that graph. · linear transforma Define T(x)=Ax=x, v, + x, v, Example 1 +(x)=x2 not ween Linear Transformations A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if $\vec{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ Let A = $\vec{b} =$ $\begin{array}{c} & & \\$ f(x)=3x RSSOF a) Compute $T(\vec{u}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} + I \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + I \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ $\begin{array}{c} T(c_1\vec{v}_1+\cdots+c_k\vec{v}_k)=c_1T(\vec{v}_1)+\cdots+c_kT(\vec{v}_k) \\ \hline This is called the principle of superposition. The idea is that if we know <math display="inline">T(\vec{c}_1),\ldots,T(\vec{c}_n)$, then we know every $T(\vec{v}). \end{array}$ In camb aut put The image of ï٩ b) Calculate $\vec{v} \in \mathbb{R}^2$ so that $T(\vec{v})$ (2) under T. c) Given a $\vec{c} \in \mathbb{R}^3$ so there is no \vec{v} with $T(\vec{v}) = \vec{c}$ c) Give a $\vec{c} \in \mathbb{R}^3$ so there is no \vec{v} with $T(\vec{v}) = \vec{c}$ Fact: Every matrix transformation T_A is linear So Jornain of or: Give a \vec{c} that is not in the range of T. T is R2 or: Give a \vec{c} that is not in the span of the columns of A. and the codomain is R2 row reduce Viden ALGI 117 25 015 a=z maips チショ 1 no por ove of but an inconsistant w^{h1} system non of these 9 857 156 all work

1.8 EXERCISES

1. Let
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, and define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.
Find the images under T of $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.
2. Let $A = \begin{bmatrix} .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.
Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.

In Exercises 3–6, with T defined by $T(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is **b**, and determine whether \mathbf{x} is unique.

3.
$$A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 \\ 7 \\ -3 \end{bmatrix}$$

4. $A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & -4 \\ 3 & -5 & -9 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 6 \\ -7 \\ -9 \end{bmatrix}$
5. $A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$
6. $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}$

- 7. Let A be a 6×5 matrix. What must a and b be in order to define $T : \mathbb{R}^a \to \mathbb{R}^b$ by $T(\mathbf{x}) = A\mathbf{x}$?
- 8. How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^4 into \mathbb{R}^5 by the rule $T(\mathbf{x}) = A\mathbf{x}$?

For Exercises 9 and 10, find all **x** in \mathbb{R}^4 that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A\mathbf{x}$ for the given matrix A.

$$\mathbf{D} \cdot \mathbf{A} = \begin{bmatrix} 1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4 \end{bmatrix}$$

70 CHAPTER 1 Linear Equations in Linear Algebra

18. The figure shows vectors u, v, and w, along with the images T(u) and T(v) under the action of a linear transformation T : R² → R². Copy this figure carefully, and draw the image T(w) as accurately as possible. [*Hint:* First, write w as a linear combination of u and v.]

- **19.** Let $\mathbf{e}_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0\\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2\\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1\\ 6 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5\\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1\\ x_2 \end{bmatrix}$.
- **20.** Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{x} into $x_1\mathbf{v}_1 + x_2\mathbf{v}_2$. Find a matrix A such that $T(\mathbf{x})$ is $A\mathbf{x}$ for each \mathbf{x} .

In Exercises 21 and 22, mark each statement True or False. Justify each answer

$$\mathbf{10.} \ A = \begin{bmatrix} 1 & 3 & 9 & 2 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -2 & 3 & 0 & 5 \end{bmatrix}$$

11. Let $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and let A be the matrix in Exercise 9. Is \mathbf{b} in

the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$? Why or why not?

12. Let $\mathbf{b} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$, and let A be the matrix in Exercise 10. Is

b in the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$? Why or why not?

In Exercises 13–16, use a rectangular coordinate system to plot $\mathbf{u} = \begin{bmatrix} 5\\2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2\\4 \end{bmatrix}$, and their images under the given transfor-

mation T. (Make a separate and reasonably large sketch for each exercise.) Describe geometrically what T does to each vector \mathbf{x} in \mathbb{R}^2 .

13.
$$T(\mathbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

14. $T(\mathbf{x}) = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
15. $T(\mathbf{x}) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
16. $T(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

17. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 5\\2 \end{bmatrix}$ into $\begin{bmatrix} 2\\1 \end{bmatrix}$ and maps $\mathbf{v} = \begin{bmatrix} 1\\3 \end{bmatrix}$ into $\begin{bmatrix} -1\\3 \end{bmatrix}$. Use the fact that *T* is linear to find the images under *T* of 3**u**, 2**v**, and 3**u** + 2**v**.

Make two sketches similar to Figure 6 that illustrate properties (i) and (ii) of a linear transformation.

- 24. Suppose vectors v₁,..., v_p span ℝⁿ, and let T : ℝⁿ → ℝⁿ be a linear transformation. Suppose T(v₁) = 0 for i = 1,..., p. Show that T is the zero transformation. That is, show that if x is any vector in ℝⁿ, then T(x) = 0.
- 25. Given v ≠ 0 and p in ℝⁿ, the line through p in the direction of v has the parametric equation x = p + tv. Show that a linear transformation T : ℝⁿ → ℝⁿ maps this line onto another line or onto a single point (a *degenerate line*).
- 26. Let u and v be linearly independent vectors in R³, and let P be the plane through u, v, and 0. The parametric equation of P is x = su + tv (with s, t in R). Show that a linear transformation T : R³ → R³ maps P onto a plane through 0, or onto a line through 0, or onto just the origin in R³. What must be true about T(u) and T(v) in order for the image of the plane P to be a plane?
- 27. a. Show that the line through vectors p and q in ℝⁿ may be written in the parametric form x = (1 − t)p + tq. (Refer to the figure with Exercises 21 and 22 in Section 1.5.)
 - b. The line segment from **p** to **q** is the set of points of the form $(1 t)\mathbf{p} + t\mathbf{q}$ for $0 \le t \le 1$ (as shown in the figure below). Show that a linear transformation T maps this line segment onto a line segment or onto a single point.

In Exercises 21 and 22, mark each statement True or False. Justify each answer

- 21. a. A linear transformation is a special type of function. b. If A is a 3×5 matrix and T is a transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, then the domain of T is \mathbb{R}^3 .
 - c. If A is an $m \times n$ matrix, then the range of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is \mathbb{R}^m .
 - d. Every linear transformation is a matrix transformation.
 - e. A transformation T is linear if and only if $T(c_1\mathbf{v}_1 +$ $c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$ for all \mathbf{v}_1 and \mathbf{v}_2 in the domain of T and for all scalars c_1 and c_2 .
- 22. a. Every matrix transformation is a linear transformation. b. The codomain of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is the set of
 - all linear combinations of the columns of A. c. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and if c is in \mathbb{R}^m , then a uniqueness question is "Is c in the range of T?"
 - d. A linear transformation preserves the operations of vector addition and scalar multiplication.
 - e. The superposition principle is a physical description of a linear transformation.

23 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects

28. Let **u** and **v** be vectors in \mathbb{R}^n . It can be shown that the set P of all points in the parallelogram determined by u and v has the form $a\mathbf{u} + b\mathbf{v}$, for $0 \le a \le 1, 0 \le b \le 1$. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Explain why the image of a point in P under the transformation T lies in the parallelogram determined by $T(\mathbf{u})$ and $T(\mathbf{v})$.

(t = 0) p

- **29.** Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = mx + b.
 - a. Show that f is a linear transformation when b = 0.
 - b. Find a property of a linear transformation that is violated when $b \neq 0$.
 - c. Why is f called a linear function?
- **30.** An affine transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(x) = A\mathbf{x} + \mathbf{b}$, with A an $m \times n$ matrix and **b** in \mathbb{R}^m . Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in computer graphics.)
- **31.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\{v_1, v_2, v_3\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.
- In Exercises 32-36, column vectors are written as rows, such as $\mathbf{x} = (x_1, x_2)$, and $T(\mathbf{x})$ is written as $T(x_1, x_2)$.
- 32 Show that the transformation T defined by $T(x_1, x_2) =$

	201	each	point	throu	gh	the x	1-axi	s. (S	ee Pr	actice	e Pro	blem	2.)	 (4.	$x_1 - 3$	$2x_2, 3$	$3 x_2 $	is no	t line	ar.	uem	ileu i	(41,5	(2) -									
																																•	
				•		•					•										•				•		•		•			•	
						•					•				•										•				•				
				•		•	•																		•			•		•	•	•	
				•							•				•										•				•				
				•													•						•	•							•	•	
•											•																•		•		•		
•			•								•				•										•				•				
•																																	0
																																•	
						•																			•		•					•	
						•					•														•		•	•	•			•	

	ILA	
1.9 :	Matrix of a Linear Transformation	Interactive Linear Algebra Dan Margalit, Joseph Rabinoff POF version
Section 1.9 : Linear Transforms	opics	Interactive Linear Algebra
Chapter 1 : Linear Equations Math 1554 Linear Algebra	The standard vectors and the standard matrix. Two and three dimensional transformations in more detail.	Dan Margalit
	3. Onto and one-to-one transformations.	Georgia Institute of Technology -
$\begin{bmatrix} \cos^2 0 & \sin^2 \overline{0} \\ -\sin^2 0 & \sin^2 \overline{0} \\ -\sin^2 0 & \sin^2 \overline{0} \end{bmatrix} = \begin{bmatrix} 0 \\ -\alpha \\ -\alpha \\ -\alpha \end{bmatrix} = \begin{bmatrix} 0 \\ -\alpha \\ $	bjectives or the topics covered in this section, students are expected to be able to the following.	School of Mathematics Georgia Institute of Technology
https://skcd.com/184	Identify and construct linear transformations of a matrix. Characterize linear transformations as onto and/or one-to-one.	June 3, 2019
	 Solve linear systems represented as linear transforms. Express linear transforms in other forms, such as as matrix equations 	
Exam Wed @ (6:30pm (ch 5 days)	
	in the second data in the second s	
Intro. Linear Algebra	nich was created by Georgia Tech professors for	
nttps://textbooks.math.gatech.edu/ila/		///////////////////////////////////////
There's a really nice section on linear transf	ormations	//////////////////////////////////////
		J / / J / ///// J /// ////////////////
Transformations		
At this point it is convenient to fix our ideas and terminology regarding functions, which we will call transformations in this book. This allows us to systematize our discussion of matrices as functions.	https://textbooks.ma	th.gatech.edu/ila/one-
Definition. A transformation from \mathbb{R}^n to \mathbb{R}^m is a rule T that assigns to each vector to \mathbb{R}^n a vector $T(x)$ in \mathbb{R}^m	to-one-onto html	
 Rⁿ is called the <i>domain</i> of T. 		
 R^m is called the <i>codomain</i> of T. For x in Rⁿ, the vector T(x) in R^m is the <i>image</i> of x under T. 		
 The set of all images {T(x) x in Rⁿ} is the range of T. 	Example (Reflection). ^	
The notation $T: \mathbf{K} \longrightarrow \mathbf{K}$ means T is a transformation from \mathbf{K} to \mathbf{K} . It may help to think of T as a "machine" that takes x as an input, and gives you $T(x)$]
as the output.	Let (-1.0)	
	$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$.	
N T	Describe the function $b = Ax$ geometrically. Solution	
x. ranse	In the equation $Ax = b$, the input vector x and the output vector b are both in \mathbf{R}^2 Eirst we multiply 4 by a vector to see what it does	
T(x)	K . First we multiply A by a vector to see what it does: $(x) (-1 \ 0)(x) (-x)$	
$R^n \longrightarrow R^m$ domain codomain	$A\begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix}\begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} y \end{pmatrix}.$	https://
	Multiplication by A negates the x-coordinate: it reflects over the y-axis.	<u>11(195)</u>
Example (A matrix transformation that is neither one-to-one nor onto).	b = Ax	textbooks.math.gate
Let		ch.edu/ila/matrix-
$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix},$		transformations html
and define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x) = Ax$. This transformation is neither one-to- one nor onto, as we saw in this example and this example.		transiornations.ntmi
$\begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix} \begin{bmatrix} -1.00 \\ 2.00 \end{bmatrix} = \begin{bmatrix} 3.00 \\ -6.00 \end{bmatrix}$	$\begin{bmatrix} 0.95 & 0.00 \\ 0.00 & 1.00 \end{bmatrix} \begin{bmatrix} 2.00 \\ 4.00 \end{bmatrix} = \begin{bmatrix} 1.90 \\ 4.00 \end{bmatrix}$	
[-2 2 -4] 3.00 [-0.00] [Click and drag the beads of x and b]	[Click and drag the vector heads] rotate 0	
	xshear 0	
7	• Transform 2	
· · · · ·	Close Controls	
A picture of the matrix transformation T. The violet plane is the solution set		
of $T(x) = 0$. If you drag x along the violet plane, the output $T(x) = Ax$ does not change. This demonstrates that $T(x) = 0$ has more than one solution, so T is not one to accord the the transformation of transformation of the transformation of transformation	53	
smaller than the codomain \mathbb{R}^2 . If you drag b off of the violet line, then the equation $Ax = b$ becomes inconsistent; this means $T(x) = b$ has no solution.	Multiplication by the matrix A reflects over the y-axis. Move the input vector x to see how the output vector b changes	
	A CO SEE HOW THE OULDUL VECTOR D CHARGES.	

					•	•	•	•		•	•		•				•			•	W	leek D	ates	•	Lectur	re	Stu	 dio		Lectur	e	•	Stur	dio	Р	
			S	ection	1.9 :	Linear	Transf	forms				1.9	9 : Ma	trix of	a Lin	ear Tra	insform	nation			1	1	/8 - 1/	12	1.1		WS	1.1		1.2			WS	1.2	1	3
				ci	hapter 1 :	Linear Eq	uations						Topics We will 1. Th	l cover th	ese topic ard vecto	s in this ars and t	section. he stand	ard mat	rix.		2	1	/15 - 1	/19	Break		WS	1.3		1.4			WS	1.4	1.	5
				h	đath 1554	Linear Al	gebra	_					2. Tv 3. O	wo and the nto and e	one-to-o	nsional t ne transf	ormation	ations in 15.	more det	ail.	3	1	/22 - 1	/26	1.7		WS	1.5,1.7		1.8			WS	1.8	1.	9
				[con	s 90° 500 90 90° 000 90								Object For the	ives topics o following	overed in	this sect	ion, stud	ents are	expected	to be able	et 4	1	/29 - 2	2/2	1.9,2.1	L	WS	1.9,2.1		Exam	1, Revie	w	Can	celled	2.	2
				[[·	https://	xkcd.com/	/184						1. Id. 2. Ch	entify and aracteriz	d constru e linear t	ct linear ransform	transform ations as	nations o onto and	f a matrix I/or one-I	c. to-one.																• •
•	•												3. Se 4. Eb or	ive linear press line as vector	systems ar transf r equatio	represen orms in c 15.	ted as lir ther forr	ear trans	forms. as as mat	trix equati	ions								•	HA	PPY	/		-		• •
	cian 1.9	Side 65	5									Sector	19 Start														•		-	6	0		-			• •
																												T	1	F	-	10		-		
																												de.	1		T					
															_												ſ	in Real		FRI	DAY	7	makear	neme of		
		Def	finitio	n: Ti	he Sta	andaro	d Vect	tors							А	Prop	erty o	of the	Stand	dard \	/ecto	rs														
			The sta	indard	rector	s in \mathbb{R}^n	are the	vectors	$\vec{e}_1, \vec{e}_2,$, ē _n	where	6 5				Note	if A is	an m	< n mat $A\vec{e}_i =$	rix with	colum $i = 1$.	ns $\vec{v}_1, \vec{v}_2,, \vec{v}_n$	$v_{2},, v_{n}$, then	n											• •
					01					-n	l					So mu	Itiplyin	g a mat	trix by ē	gives	column	i of A													•	• •
									•							Exam	(1	2 3	9]	21											•				•	• •
			For exa	mple, i	\mathbb{R}^{3} , $\vec{e}_{1} =$	[!]	\vec{e}_2	- [*	1	$\vec{e}_3 =$	19)					$\binom{4}{7}$	8 9	ا ره	5																
						0		l	01		Ui.	'																								
					ī.	172	ō	. =[1	ē	2=	0)																							
		Section 1	1.9 Side 6					U	10	1					Section	1.9 514	68																			• •
					10),																														• •
		Ĩ	đ,	=		0	-	īth	5	pot																										• •
					U	0	5																													
						٬ ٥																														
		•																																	•	• •
•	•																				•		•													• •
																																			•	• •
							•				•							•		•		•	•										•		•	• •
•		•					•				•							•		•		•	•									•	•	•		0 0
																																				• •
																																				• •
	•	•		•			•			•	•		•				•	•		•	•	•	•										•	•	•	• •
•	•																				•														•	• •

The Standard Matrix

Theorem Let $T : \mathbb{R}^n \mapsto \mathbb{R}^m$ be a linear transformation. Then there is a unique matrix A such that
$T(\vec{x}) = A\vec{x}, \qquad \vec{x} \in \mathbb{R}^m.$
In fact, A is a $m \times n,$ and its j^{th} column is the vector $T(\vec{e}_j).$
$A = \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_3) & \cdots & T(\vec{e}_n) \end{bmatrix}$

The matrix A is the standard matrix for a linear transformation.

Rotations

Example 1 What is the linear transform $T:\mathbb{R}^2\to\mathbb{R}^2$ defined by

at is the initial characteristic in a characteristic

 $T(\vec{x}) = \vec{x}$ rotated counterclockwise by angle θ ?

2	Section 1	.9 Si	ide 69									Section 1.9	Slide 1	70										
																	•		•	•				
																	•		•	•				
	•				•		•	•	•					•				•						
	•				•		•	•	•					•				•						
	•				•		•	•	•					•				•						
	•				•		•	•	•					•				•						
	•																	•						
	•				•		•	•	•					•				•						
	•																	•						
	•																	•						
	•																	•						
	•																	•						
	•																	•						
	•																	•						
	•																	•						
	•																	•						
																		•	•	•				
																		•	•	•				
																		•	•	•				

								•	•					0			0					•	•	0		•	• •					•			•	•		
																											• •											
																											• •											
																							•	•		•										•		
																											• •											
																								•			• •											
																							•			•										•		
																							•														-	
																											• •											
																											• •											
1 1																																						
. .								•	•					0			0						•	0		•	• •					•				•		
1 1																																						
. .																																						
1 1																											• •											
1 1																																						
1 1																																						
1 1																																						
. .																																						
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-	-	-	-	-	-	-	-	-	-
· · · · · · · · · · · · · · · · · · ·																								•			• •							•			•	
· · · · · · · · · · · · · · · · · · ·										•													•	•		•	• •							•		•		
								•	•														•	•		•	• •					•		•		•		
			•					•	•			•									•		•									•		•		•		

The Standard Matrix Ex. Let T(x)=Ax be the transformation which first reflects vectors in R^2 Let $T : \mathbb{R}^n \mapsto \mathbb{R}^m$ be a linear transformation. Then there unique matrix A such that across the line y=0, and then projects $T(\vec{x}) = A\vec{x},$ $\vec{x} \in \mathbb{R}^m$ In fact, A is a $m \times n$, and its j^{th} column is the vector $T(\vec{e}_j)$. the resulting vector to the y-axis. $A = \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_3) & \cdots & T(\vec{e}_n) \end{bmatrix}$ The matrix A is the standard matrix for a linear transformation Find the standard matrix of A. ¥ ¥ X TÍÈ (ē) ยี่รั []=e

Onto

Definition A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if for all $\vec{b} \in \mathbb{R}^m$ there is a $\vec{x} \in \mathbb{R}^n$ so that $T(\vec{x}) = \vec{b}$.

Onto is an existence property: for any $\vec{b} \in \mathbb{R}^m$, $A\vec{x} = \vec{b}$ has a solution.

Examples

- · A rotation on the plane is an onto linear transformation.
- A projection in the plane is not onto.

Useful Fact

T is onto if and only if its standard matrix has a pivot in every row.

A has a proof in every Eous <>> REEF of A has no zero rows.

One-to-One

Definition A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if for all $\vec{b} \in \mathbb{R}^m$ there is at most one (possibly no) $\vec{x} \in \mathbb{R}^n$ so that $T(\vec{x}) = \vec{b}$.

One-to-one is a uniqueness property, it does not assert existence for all \vec{b} .

Examples

- · A rotation on the plane is a one-to-one linear transformation.
- · A projection in the plane is not one-to-one.

Useful Facts

- T is one-to-one if and only if the only solution to $T(\vec{x}) = 0$ is the zero vector, $\vec{x} = \vec{0}$.
- T is one-to-one if and only if the standard matrix A of T has no free variables.

Ľ has a pivotik every coucher ≫ A Q: Example of transformetion which is (> Ax=6 has at most one soluti (G) one-to-on but not onto? $\mathbb{R}^2 \rightarrow \mathbb{R}^3$ Γ: ΄ one-to-one? not. (L) 0177 01 121-122 \mathbb{D}^3 $\neg \mathbb{R}^2$ 1 21 th to Tr

Standard Matrices in \mathbb{R}^2

- There is a long list of geometric transformations of \mathbb{R}^2 in our textbook, as well as on the next few slides (reflections, rotations, contractions and expansions, shears, projections, \dots)
- Please familiarize yourself with them: you are expected to memorize them (or be able to derive them)

The Standard Matrix

Let $T : F$	$\mathbb{I}^n \mapsto \mathbb{R}^m$ be a linear transformation. Then there matrix A such that
is a unique	matrix A such that
	$T(\vec{x}) = A\vec{x}, \vec{x} \in \mathbb{R}^{m}.$
In fact, A	is a $m \times n$, and its j^{th} column is the vector $T(\vec{e_i})$.

The matrix A is the standard matrix for a linear transformation.

Two Dimensional Examples: Reflections

standard matrix $\binom{1 \quad 0}{0 \quad -1} \binom{a}{b} = \begin{bmatrix} a \\ -b \end{bmatrix}$ $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ 5 \end{pmatrix} = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$

 $\binom{k \ 0}{0 \ 1}$. |k| < 1

 $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$, k > 1

Section 1.9 Slide 72

transformation

Horizontal Contraction

Two Dimensional Examples: Contractions and Expansions

Two Dimensional Examples: Shears

Two Dimensional Examples: Shears

transformation	image of unit square	standard matrix
Horizontal Shear(left)		$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}, k < 0$
orizontal Shear(right)	k < 0	$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k > 0$
	k > 0	(0 1),*>

Two Dimensional Examples: Contractions and Expansions

image of unit square

Two Dimensional Examples: Projections

Example

Complete the matrices below by entering numbers into the missing entries so that the properties are satisfied. If it isn't possible to do so, state why.

a) A is a 2×3 standard matrix for a one-to-one linear transform $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

b) B is a 3×2 standard matrix for an onto linear transform.

 $B = \begin{pmatrix} 1 \\ \end{pmatrix}$

c) C is a 3×3 standard matrix of a linear transform that is one-to-one and onto.

 $C = \begin{pmatrix} 1 & 1 & 1 \\ & &$

For a linear transformation $T~:~\mathbb{R}^n\to\mathbb{R}^m$ with standard matrix A these are equivalent statements.

1. T is onto.

- 2. The matrix A has columns which span \mathbb{R}^m
- 3. The matrix A has m pivotal columns.

Theorem

Section 1.9 Slide 82

For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A these are equivalent statements.

- 1. T is one-to-one.
- 2. The unique solution to $T(\vec{x}) = \vec{0}$ is the trivial one.
- 3. The matrix A linearly independent columns.
- 4. Each column of A is pivotal.

	•			•	•		•				•	•	•				•	•			•
•	•	•			•		•				•	•	•				•	•	•	•	
•				•	•		•				•	•	•				•	•	•	•	•
	•						•						•				•	•			
			-							-											

Example 2

Cartine 1.0 Side 01

Define a linear transformation by

 $T(x_1,x_2)=(3x_1+x_2,5x_1+7x_2,x_1+3x_2).$ Is this one-to-one? Is it onto?

Additional Example (if time permits)

Let T be the linear transformation whose standard matrix is

	1	0	0	
4	$^{-4}$	8	1	
A =	2	$^{-1}$	3	
	0	0	5	

Is the transformation onto? Is it one-to-one?

Section 1.9 Side 84

Ir $\left(\begin{array}{c} 2\\1\\1\end{array}\right) = \mathbf{X}_{1}$ シス $\binom{2}{5} = T(\overline{x})$ $\left(\left(\begin{array}{c} z \\ z \end{array} \right), \left(\begin{array}{c} z \\ z \end{array} \right) \right)$ $\frac{1}{\sqrt{y^2 - x^2}}$ $f(x) = x^2$ 1 f R-R

1.9 EXERCISES

In Exercises 1–10, assume that T is a linear transformation. Find the standard matrix of T.

- **1.** $T : \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e}_1) = (3, 1, 3, 1)$ and $T(\mathbf{e}_2) = (-5, 2, 0, 0)$, where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.
- **2.** $T : \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1, 3)$, $T(\mathbf{e}_2) = (4, -7)$, and $T(\mathbf{e}_3) = (-5, 4)$, where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are the columns of the 3×3 identity matrix.
- **3.** $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $3\pi/2$ radians (counterclockwise).
- 4. $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates points (about the origin) through $-\pi/4$ radians (clockwise). [*Hint:* $T(\mathbf{e}_1) = (1/\sqrt{2}, -1/\sqrt{2}).]$
- T: ℝ² → ℝ² is a vertical shear transformation that maps e₁ into e₁ − 2e₂ but leaves the vector e₂ unchanged.
- T: ℝ² → ℝ² is a horizontal shear transformation that leaves
 e₁ unchanged and maps e₂ into e₂ + 3e₁.
- 7. $T : \mathbb{R}^2 \to \mathbb{R}^2$ first rotates points through $-3\pi/4$ radian (clockwise) and then reflects points through the horizontal x_1 -axis. [*Hint*: $T(\mathbf{e}_1) = (-1/\sqrt{2}, 1/\sqrt{2})$.]
- 8. $T : \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$.
- 9. T: ℝ² → ℝ² first performs a horizontal shear that transforms e₂ into e₂ 2e₁ (leaving e₁ unchanged) and then reflects points through the line x₂ = -x₁.
- **10.** $T : \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the vertical x_2 -axis and then rotates points $\pi/2$ radians.
- 11. A linear transformation T : ℝ² → ℝ² first reflects points through the x₁-axis and then reflects points through the x₂-axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation?
- **12.** Show that the transformation in Exercise 8 is merely a rotation about the origin. What is the angle of the rotation?
- Let T : ℝ² → ℝ² be the linear transformation such that T(e₁) and T(e₂) are the vectors shown in the figure. Using the figure, sketch the vector T(2, 1).

14. Let T: R² → R² be a linear transformation with standard matrix A = [a₁ a₂], where a₁ and a₂ are shown in the figure. Using the figure, draw the image of [-1] under the

In Exercises 15 and 16, fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

In Exercises 17–20, show that T is a linear transformation by finding a matrix that implements the mapping. Note that x_1, x_2, \ldots are not vectors but are entries in vectors.

- **17.** $T(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_3, x_3 + x_4)$
- **18.** $T(x_1, x_2) = (2x_2 3x_1, x_1 4x_2, 0, x_2)$
- **19.** $T(x_1, x_2, x_3) = (x_1 5x_2 + 4x_3, x_2 6x_3)$
- **20.** $T(x_1, x_2, x_3, x_4) = 2x_1 + 3x_3 4x_4$ $(T : \mathbb{R}^4 \to \mathbb{R})$
- **21.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 5x_2)$. Find **x** such that $T(\mathbf{x}) = (3, 8)$.
- **22.** Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T(x_1, x_2) = (x_1 2x_2, -x_1 + 3x_2, 3x_1 2x_2)$. Find **x** such that $T(\mathbf{x}) = (-1, 4, 9)$.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- 23. a. A linear transformation T : ℝⁿ → ℝ^m is completely determined by its effect on the columns of the n × n identity matrix.
 - b. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle φ , then T is a linear transformation.
 - c. When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - d. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector **x** in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
 - e. If A is a 3×2 matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ cannot be one-to-one.
 - a. Not every linear transformation from ℝⁿ to ℝ^m is a matrix transformation.
 - b. The columns of the standard matrix for a linear transformation from Rⁿ to R^m are the images of the columns of the n × n identity matrix.

80 CHAPTER 1 Linear Equations in Linear Algebra

- c. The standard matrix of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$, where a and d are ± 1 .
- d. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m .
- e. If A is a 3 × 2 matrix, then the transformation x → Ax cannot map ℝ² onto ℝ³.

In Exercises 25–28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.

- 25. The transformation in Exercise 17
- **26.** The transformation in Exercise 2
- 27. The transformation in Exercise 19
- 28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the standard matrix for a linear transformation T. Use the notation of Example 1 in Section 1.2.

- **29.** $T : \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one.
- **30.** $T : \mathbb{R}^4 \to \mathbb{R}^3$ is onto.
- 31. Let T: ℝⁿ → ℝ^m be a linear transformation, with A its standard matrix. Complete the following statement to make it true: "T is one-to-one if and only if A has _____ pivot columns." Explain why the statement is true. [*Hint*: Look in the exercises for Section 1.7.]

32. Let T: Rⁿ → R^m be a linear transformation, with A its standard matrix. Complete the following statement to make it true: "T maps Rⁿ onto R^m if and only if A has ______ pivot columns." Find some theorems that explain why the statement is true.

33. Verify the uniqueness of *A* in Theorem 10. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $T(\mathbf{x}) = B\mathbf{x}$ for some

 $m \times n$ matrix B. Show that if A is the standard matrix for T, then A = B. [Hint: Show that A and B have the same columns.]

- **34.** Why is the question "Is the linear transformation T onto?" an existence question?
- **35.** If a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m , can you give a relation between *m* and *n*? If *T* is one-to-one, what can you say about *m* and *n*?
- 36. Let S : ℝ^p → ℝⁿ and T : ℝⁿ → ℝⁿ be linear transformations. Show that the mapping x ↦ T(S(x)) is a linear transformation (from ℝ^p b or ℝⁿ).[*Hint*: Compute T/S(cu + d x)) for u, v in ℝ^p and scalars c and d. Justify each step of the computation, and explain why this computation gives the desired conclusion.]

[M] In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps \mathbb{R}^5 onto \mathbb{R}^5 . Justify your answers.

0

	-5	10	-5	4			7	5	4	
37	8	3	-4	7		38	10	6	16	•
57.	4	-9	5	-3		50.	12	8	12	
	3	$^{-2}$	5	4			8	-6	-2	
		-		-	- 7					
	4	-7	3	1	5					
	6	-8	5	12	-8					
39.	-7	10	-8	-9	14					
	3	-5	4	2	-6					
	5	6	-6	-7	3					
	F 0	10	-	1						
	9	13	5	6	-1					
	14	15	-7	-6	4					
40.	-8	-9	12	-5	-9					
	-5	-6	-8	9	8					
	13	14	15	2	11					
	-				_					

1												Γ.	5 .	 5		. 1													
																									•				
																									•	•		•	
•																							•		•				
					•																				•			•	
					•															•			•			•	•		
																									•				
																											•		
																•					•		•						
																							•		•				
																•									•			•	
																							•		•				