


# Section 2.1: Matrix Operations

Chapter 2: Matrix Algebra

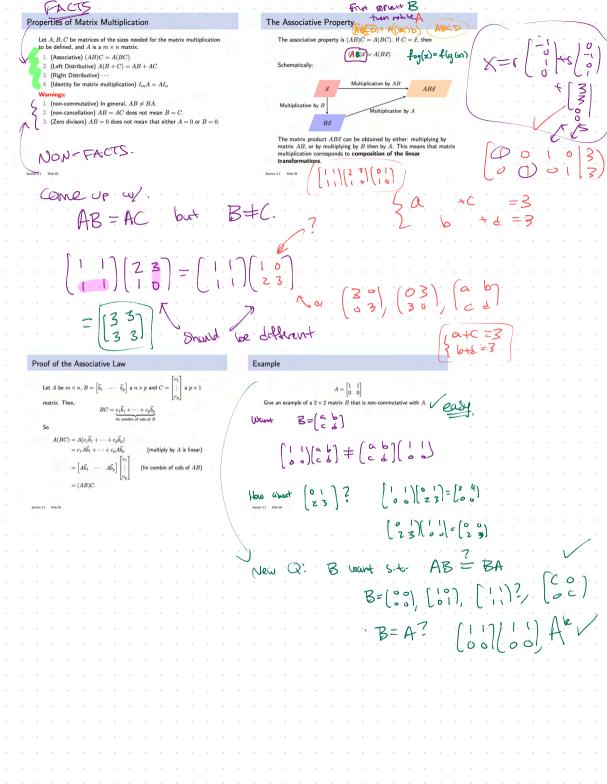
Math 1554 Linear Algebra

# Topics and Objectives

# **Topics**

We will cover these topics in this section.

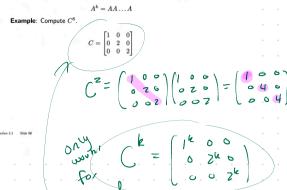
1. Identity and zero matrices

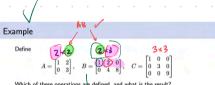

- 2. Matrix algebra (sums and products, scalar multiplies, matrix powers)
- Matrix algebra (sums and products, scalar multiplies, matrix powers).
   Transpose of a matrix

# Objectives

For the topics covered in this section, students are expected to be able to do the following.

 Apply matrix algebra, the matrix transpose, and the zero and identity matrices, to solve and analyze matrix equations.


|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Week Dates Lecture                                                                                                                                                                      | Studio    | Lecture        | Studio           | Lect |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|------------------|------|
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1/8 - 1/12 1.1                                                                                                                                                                        | WS1.1     | 1.2            | WS1.2            | 1.3  |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 1/15 - 1/19 Break                                                                                                                                                                     | WS1.3     | 1.4            | WS1.4            | 1.5  |
|                                                                                                                                                                                                                                                             | Topics and Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 1/22 - 1/26 1.7                                                                                                                                                                       | WS1.5,1.7 | 1.8            | WS1.8            | 1.9  |
| Section 2.1 : Matrix Operations                                                                                                                                                                                                                             | Topics We will cover these topics in this section.  1. Identity and zero matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1/29 - 2/2 1.9,2.1                                                                                                                                                                    | WS1.9,2.1 | Exam 1, Review | Cancelled        | 2.2  |
| Chapter 2 : Matrix Algebra<br>Math 1554 Linear Algebra                                                                                                                                                                                                      | Matrix algebra (sums and products, scalar multiplies,     Transpose of a matrix     Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exam                                                                                                                                                                                    | . 1       | 3              | Mo #             | 4    |
| <b>1</b> 0.00 ( , , )                                                                                                                                                                                                                                       | For the topics covered in this section, students are expected to the following.  1. Apply matrix algebra, the matrix transpose, and the identity matrices, to solve and analyze matrix equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         | , W       | ed e           | - <del>-</del> - | کے   |
| (00) + (000)                                                                                                                                                                                                                                                | + *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                       |           |                |                  |      |
| Definitions: Zero and Identity Matrices                                                                                                                                                                                                                     | Sums and Scalar Multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es                                                                                                                                                                                      |           |                |                  | ٠    |
| A zero matrix is any matrix whose every entry is zero.                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is the element of $A$ in row $i$ and column                                                                                                                                             | j.        |                |                  | ٠    |
| $0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},  0_{2\times 1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 2. The $n \times n$ identity matrix has ones on the main diagonal,                                                            | <ol> <li>If A and B are m × n m:         a<sub>i,j</sub> + b<sub>i,j</sub>.</li> <li>If c ∈ ℝ, then the element</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atrices, then the elements of $A+B$ are                                                                                                                                                 |           |                |                  |      |
| otherwise all zeros.                                                                                                                                                                                                                                        | For example, if $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_{+c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} 7 & 4 & 7 \\ 0 & 0 & k \end{bmatrix} = \begin{bmatrix} 15 & 10 & 17 \\ 4 & 5 & 16 \end{bmatrix}$                                                                       |           |                |                  |      |
| $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},  I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                                                              | $[4 \ 5 \ 6]$ What are the values of $c$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [0 0 k] [4 5 16]<br>k?                                                                                                                                                                  |           |                |                  |      |
| Note: any matrix with dimensions $n \times n$ is square. Zero matrices not be square, identity matrices must be square.                                                                                                                                     | need                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |           |                |                  |      |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
| 1 1 2                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
| 7×1=7                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
| V + 1 = x · XEIR                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  | ٠    |
| AXX= [ 2.3][ [0]]=[2                                                                                                                                                                                                                                        | 3 = A try [10\2<br>4 = A try [01/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{3}{4} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$                                                                                                                            |           |                |                  |      |
| A*I = A.)                                                                                                                                                                                                                                                   | I*A=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A -                                                                                                                                                                                     |           |                |                  |      |
| FACTS                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
| Properties of Sums and Scalar Multiples                                                                                                                                                                                                                     | Matrix Multiplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                         |           |                |                  |      |
| Scalar multiples and matrix addition have the expected properties.                                                                                                                                                                                          | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         |           |                |                  |      |
| If $r, s \in \mathbb{R}$ are scalars, and $A, B, C$ are $m \times n$ matrices, then $ \begin{array}{c} 1.  A + 0_{m \times n} = A \\ 2.  (A + B) + C = A + (B + C) \\ 3.  r(A + B) = rA + rB \\ 4.  (r + s)A = rA + sA \\ 5.  r(s, A) = (rs)A \end{array} $ | product is $\int_{AB} a \ m \times AB = A \left[ \vec{b}_1 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | atrix, and $B$ be a $n \times p$ matrix. The $p$ matrix, equal to $ \vec{b}_p = \begin{bmatrix} A\vec{b}_1 \end{bmatrix} \cdots A\vec{b}_p $ and $B$ determine whether $AB$ is defined, | and       |                |                  |      |
|                                                                                                                                                                                                                                                             | what its dimensions will be.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on the same of                                                                          |           |                |                  |      |
| (Z+3)A = 5A                                                                                                                                                                                                                                                 | A<br>m×n<br>t t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
| =ZA+3A /                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | leuna ac                                                                                                                                                                                | 0         |                |                  |      |
| = CH+5H V                                                                                                                                                                                                                                                   | 242 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of product                                                                                                                                                                              |           | of AB          | 2,1012           |      |
| A                                                                                                                                                                                                                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (147                                                                                                                                                                                  | · Cate    | رهی ۱۳۸۰       | . A · ·          |      |
| A. B.                                                                                                                                                                                                                                                       | =   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1= 632 /                                                                                                                                                                                | - 101 . 1 | " cosz "       | of B.            |      |
|                                                                                                                                                                                                                                                             | ( 4 / ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |           | · * (0)        | 120              |      |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |
| BA                                                                                                                                                                                                                                                          | $\frac{1}{2} = \left( \frac{1}{2} - \frac{1}{2} + \frac{2}{2} \right) \left( \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left( \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left( \frac{2}{2} + \frac{2}{2}$ | 3/1=1/10.2                                                                                                                                                                              |           |                |                  |      |
|                                                                                                                                                                                                                                                             | 1 1/0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) (23.                                                                                                                                                                                 | ) [ ]     |                |                  |      |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |           |                |                  |      |




# The Transpose of a Matrix $A^T$ is the matrix whose columns are the rows of A. Example $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 0 & 2 & 0 \end{bmatrix}^T = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 3 & 0 & 2 & 0 \end{bmatrix}^T$ Properties of the Matrix Transposer 1. $(A^T)^T = A$ 2. $(A + B)^T = A^T + B^T$ 3. $(rA)^T = C$ 4. $(AB)^T = A^T$ Section 2.1. Sold 87 Mixe $C^X$ in $C^X$

# Matrix Powers

For any  $n\times n$  matrix and positive integer  $k,\ A^k$  is the product of k copies of A.





$$\frac{3x^{2}}{4} \cdot B^{T}A$$
  $3 \times 2$    
5.  $C^{3} = CCC$   $3 \times 3$ 

DXW NXB

5. 
$$C^{\circ} = CCC$$
 \$ \( \) \( 2\)\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \

Section 2.1 Slide 99

True or false:

1. For any 
$$I_n$$
 and any  $A \in \mathbb{R}^{n \times n}$ ,  $(I_n + A)(I_n - A) = I_n - A^2$ .

2. For any A and B in  $\mathbb{R}^{n\times n}$ ,  $(A+B)^2=A^2+B^2+2AB$ .

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \overline{C3} \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ \overline{C3} & 0 & 0 \end{bmatrix}$$

$$T(x) = Ax$$

$$f(x) = 3x$$
onto

# 2.1 Exercises

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved "match" appropriately.

3. Let 
$$A = \begin{bmatrix} 4 & -1 \\ 5 & -2 \end{bmatrix}$$
. Compute  $3I_2 - A$  and  $(3I_2)A$ .

4. Compute  $A = 5I_3$  and  $(5I_3)A$ , when

$$A = \begin{bmatrix} 9 & -1 & 3 \\ -8 & 7 & -3 \\ -4 & 1 & 8 \end{bmatrix}.$$

for B.

In Exercises 5 and 6, compute the product AB in two ways: (a) by the definition, where Ab<sub>1</sub> and Ab<sub>2</sub> are computed separately, and (b) by the row–column rule for computing AB.

12. Let 
$$A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}$$
. Construct a 2 × 2 matrix B such that AB is the zero matrix. Use two different nonzero columns

Exercises 15–24 concern arbitrary matrices A, B, and C for which the indicated sums and products are defined. Mark each statement True or False (T/F). Justify each answer.

True or False (T/F). Justify each answer.

15. (T/F) If A and B are  $2 \times 2$  with columns  $\mathbf{a}_1$ ,  $\mathbf{a}_2$ , and  $\mathbf{b}_1$ ,  $\mathbf{b}_2$ ,

respectively, then  $AB = [\mathbf{a_1b_1} \quad \mathbf{a_2b_2}].$ **16.** (T/F) If A and B are  $3 \times 3$  and  $B = [\mathbf{b_1} \quad \mathbf{b_2} \quad \mathbf{b_3}]$ , then  $AB = [A\mathbf{b_1} + A\mathbf{b_2} + A\mathbf{b_3}].$ 

17. (T/F) Each column of AB is a linear combination of the columns of B using weights from the corresponding column of A.
18. (T/F) The second row of AB is the second row of A multi-

 (T/F) The second row of AB is the second row of A multiplied on the right by B.

19. (T/F) AB + AC = A(B + C)

**20.** (T/F)  $A^T + B^T = (A + B)^T$ 

Why?

21. (T/F) (AB)C = (AC)B22.  $(T/F) (AB)^T = A^T B^T$ 

23. (T/F) The transpose of a product of matrices equals the

product of their transposes in the same order.

24. (T/F) The transpose of a sum of matrices equals the sum of

25. If  $A = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$  and  $AB = \begin{bmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{bmatrix}$ , determine

the first and second columns of B.
26. Suppose the first two columns, b<sub>1</sub> and b<sub>2</sub>, of B are equal. What can you say about the columns of AB (if AB is defined)? Why?

27. Suppose the third column of B is the sum of the first two columns. What can you say about the third column of AB? 5.  $A = \begin{bmatrix} -1 & 2 \\ 5 & 4 \\ 2 & -3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 3 & -4 \\ -2 & 1 \end{bmatrix}$ 

**6.**  $A = \begin{bmatrix} 4 & -2 \\ -3 & 0 \\ 3 & 5 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix}$ 

7. If a matrix A is 5 × 3 and the product AB is 5 × 7, what is the size of B?

8. How many rows does B have if BC is a  $3 \times 4$  matrix?

9. Let  $A = \begin{bmatrix} 2 & 5 \\ -3 & 1 \end{bmatrix}$  and  $B = \begin{bmatrix} 4 & -5 \\ 3 & k \end{bmatrix}$ . What value(s) of k, if any, will make AB = BA?

10. Let  $A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$ ,  $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}$ , and  $C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$ . Verify that AB = AC and yet  $B \neq C$ .

11. Let  $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix}$  and  $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ . Compute AD and DA. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a  $3 \times 3$  matrix B, not the identity matrix or the zero matrix, such that AB = BA.

28. Suppose the second column of B is all zeros. What can you say about the second column of AB?29. Suppose the last column of AB is all zeros, but B itself has

no column of zeros. What can you say about the columns of A?30. Show that if the columns of B are linearly dependent, then so are the columns of AB.

Suppose CA = I<sub>n</sub> (the n × n identity matrix). Show that the equation Ax = 0 has only the trivial solution. Explain why A cannot have more columns than rows.

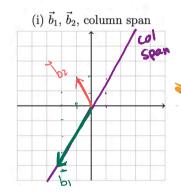
32. Suppose AD = I<sub>m</sub> (the m × m identity matrix). Show that for any b in R<sup>m</sup>, the equation Ax = b has a solution. [Hint: Think about the equation ADb = b.] Explain why A cannot have more rows than columns.

33. Suppose A is an m × n matrix and there exist n × m matrices C and D such that CA = I<sub>n</sub> and AD = I<sub>m</sub>. Prove that m = n and C = D. [Hint: Think about the product CAD.]

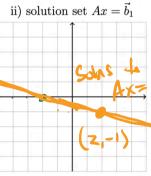
1. Consider the matrix A and vectors  $\vec{b}_1$  and  $\vec{b}_2$ .

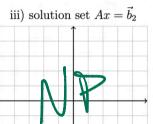
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 8 \end{pmatrix}, \quad \vec{b}_1 = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

WS1.5.1.7


WS1 4

15


$$A = \begin{pmatrix} 1 & 4 \\ 2 & 8 \end{pmatrix}, \quad \vec{b}_1 = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$


If possible, on the grids below, draw

- (i) the two vectors and the span of the columns of A,
- (ii) the solution set of  $A\vec{x} = \vec{b}_1$ .
- (iii) the solution set of  $A\vec{x} = \vec{b}_2$ .





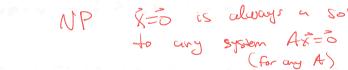




$$\begin{bmatrix} 1 & 4 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \end{bmatrix}$$

$$2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

$$X = \left( \begin{array}{ccc} -4 & 1 \\ 0 & 1 \end{array} \right) + \left( \begin{array}{ccc} -2 & 1 \\ 0 & 1 \end{array} \right)$$


(ncousishut

2. Indicate **true** if the statement is true, otherwise, indicate **false**. For the statements that are false, give a counterexample.



|                                                                                                                                                                       | true | false | counterexample          | · · · · · · · · · · · · · · · · · · ·                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------------------------|-------------------------------------------------------------------------------------------------|
| a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, then the columns of $A$ cannot span $\mathbb{R}^M$                                              | 0    | • S   | zan { [ o   ( ° ) , ( ' |                                                                                                 |
| b) If there are some vectors $\vec{b} \in \mathbb{R}^M$ that are not in the range of $T(\vec{x}) = A\vec{x}$ , then there cannot be a pivot in every row of $A$ .     | •    | 0     |                         | $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ |
| c) If the transform $\vec{x} \mapsto A\vec{x}$ projects points in $\mathbb{R}^2$ onto a line that passes through the origin, then the transform cannot be one-to-one. | •    | 0     |                         | Ax=b                                                                                            |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                 |      |       | ( 1 D ( )               | constitute                                                                                      |
|                                                                                                                                                                       |      |       | AX= V (bao)             | 1000                                                                                            |
|                                                                                                                                                                       |      |       | المنابع المنطق          | 10 1 be                                                                                         |
|                                                                                                                                                                       |      |       | 1 1                     |                                                                                                 |

- 3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write not possible.
  - (a) A linear system that is homogeneous and has no solutions.



(b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and  $T_A: \mathbb{R}^3 \to \mathbb{R}^4$  is one-to-one.

(c) A 
$$3 \times 7$$
 matrix A, in RREF, with exactly 2 pivot columns, such that  $A\vec{x} = \vec{b}$  has exactly 5 free variables.

4. Consider the linear system 
$$A\vec{x} = \vec{b}$$
, where 
$$A = \begin{pmatrix} 1 & 0 & 7 & 0 & -5 \\ 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

- (a) Express the augmented matrix  $(A | \vec{b})$  in RREF.
- (b) Write the set of solutions to  $A\vec{x} = \vec{b}$  in parametric vector form. Your answer must be expressed as a vector equation.

$$[A|b] = \begin{bmatrix} 1 & 7 & 0 & -5 & | & 1 \\ 0 & 1 & 1 & 0 & 3 & | & 2 \\ 0 & 0 & 1 & 0 & 0 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & | & -5 & | & -13 \\ 0 & 1 & 0 & 0 & | & 2 & | & 2 \\ 0 & 0 & 1 & 0 & 0 & | & 2 \end{bmatrix}$$

# Section 2.2: Inverse of a Matrix

Chapter 2: Matrix Algebra

Math 1554 Linear Algebra

"Your scientists were so preoccupied with whether or not they could, they didn't stop to think if they should."

- Spielberg and Crichton, Jurassic Park, 1993 film

The algorithm we introduce in this section **could** be used to compute an inverse of an  $n \times n$  matrix. At the end of the lecture we'll discuss some of the problems with our algorithm and why it can be difficult to compute a



# Topics and Objectives

## Topics

We will cover these topics in this section.

- Inverse of a matrix, its algebraic properties, and its relation to solving systems of linear equations.
- 2. Elementary matrices and their role in calculating the matrix inverse.

# Objectives

For the topics covered in this section, students are expected to be able to do the following.

- Apply the formal definition of an inverse, and its algebraic properties, to solve and analyze linear systems.
- 2. Compute the inverse of an  $n \times n$  matrix, and use it to solve linear systems.
- 3. Construct elementary matrices.

# Motivating Question

Is there a matrix, 
$$A$$
, such that 
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} A = I_3?$$

# Section 2.2 : Inverse of a Matrix

Chapter 2 : Matrix Algebra Math 1554 Linear Algebra

sts were so preoccupied with whether or not they co they didn't stop to think if they should."

Spielberg and Crichton, Jurassic Park, 1993 film

we introduce in this section could be used to compute of an  $n \times n$  matrix. At the end of the lecture we'll discuss so shlems with our algorithm and why it can be difficult to compr matrix inverse.

# Topics and Objectives

- Topics

  We will cover these topics in this section.

  Inverse of a matrix, its algebraic properties, and its relation to solving systems of linear equations.

  Elementary matrices and their role in calculating the matrix inverse

**Objectives**For the topics covered in this section, students are expected to be able to the topics covered in the solution of an inverse, and its algebraic properties, to solve and analyze linear systems. Compute the inverse of an  $n \times n$  matrix, and use it to solve line

- terns. nstruct elementary matrices

Is there a matrix, 
$$A$$
, such that  $\begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} A = I_3$ 

# Course Schedule

|      |             | Mon     | Tue        | Wed            | Thu        | Fri      |
|------|-------------|---------|------------|----------------|------------|----------|
| Week | Dates       | Lecture | Studio     | Lecture        | Studio     | Lecture  |
| 1    | 1/8 - 1/12  | 1.1     | W51.1      | 1.2            | WS1.2      | 1.3      |
| 2    | 1/15 - 1/19 | Break   | WS1.3      | 1.4            | WS1.4      | 1.5      |
| 3    | 1/22 - 1/26 | 1.7     | W\$1.5,1.7 | 1.8            | WS1.8      | 1.9      |
| 4    | 1/29 - 2/2  | 1.9,2.1 | W\$1.9,2.1 | Exam 1, Review | Cancelled  | 2.2      |
| 5    | 2/5 - 2/9   | 2.3,2.4 | W52.2-2.4  | 2.5            | W\$2.5     | 2.8      |
| 6    | 2/12 - 2/16 | 2.9     | W52.8      | 2.9,3.1        | W\$2.9,3.1 | 3.2      |
| 7    | 2/19 - 2/23 | 3.3     | W53.2      | 4.9            | WS3.3,4.9  | 5.1      |
| 8    | 2/26 - 3/1  | 5.2     | W\$5.1,5.2 | Exam 2, Review | Cancelled  | 5.3      |
| 9    | 3/4 - 3/8   | 5.3     | WS5.3      | 5.5            | WS5.5      | 6.1      |
| 10   | 3/11 - 3/15 | 6.1,6.2 | W56.1      | 6.2            | W\$6.2     | 6.3      |
| 11   | 3/18 = 3/22 | Break   | Break      | Break          | Break      | Break    |
| 12   | 3/25 - 3/29 | 6.4     | W56.3      | 6.4,6.5        | WS6.4      | 6.5      |
| 13   | 4/1 - 4/5   | 6.6     | W56.5,6.6  | Exam 3, Review | Cancelled  | PageRank |
| 14   | 4/8 - 4/12  | 7.1     | WSPageRank | 7.2            | WS7.1,7.2  | 7.3      |
| 15   | 4/15 - 4/19 | 7.3,7.4 | W57.3      | 7.4            | WS7.4      | 7.4      |

# The Matrix Inverse

 $A \in \mathbb{R}^{n \times n}$  is invertible (or non-singular) if there is a  $C \in \mathbb{R}^{n \times n}$  so that

$$AC = CA = I_n$$

If there is, we write  $C = A^{-1}$ 

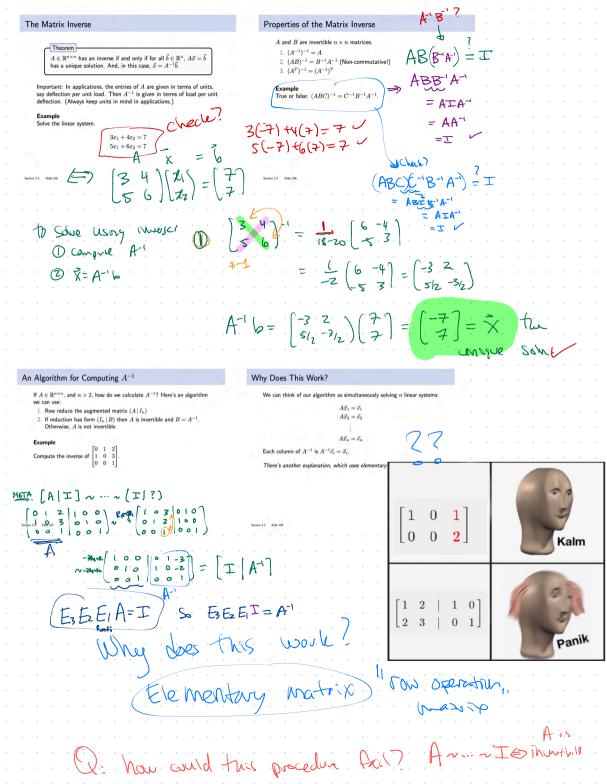
# The Inverse of a $2 \times 2$ Matrix

There's a formula for computing the inverse of a  $2 \times 2$  matrix

The  $2\times 2$  matrix  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  is non-singular if and only if  $ad-bc\neq 0$  , and then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & d \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} = \frac{1}{2(-1) - 5(-3)} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$$

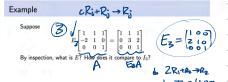

https://strawpoll.com/eJnyVo274nv

$$A*A^{-1} = \begin{pmatrix} 2 & 5 \\ -3 & -1 \end{pmatrix} \begin{pmatrix} -7 & -5 \\ 3 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2}$$

know

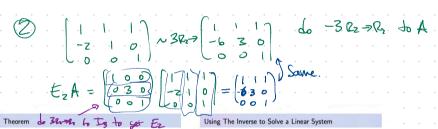
X = A'b

delived - No!




# Elementary Matrices

An elementary matrix, E, is one that differs by  $I_n$  by one row operation Recall our elementary row operations:


- 1. swap rows
- 2. multiply a row by a non-zero scalar
- 3. add a multiple of one row to another

We can represent each operation by a matrix multiplication with an elementary matrix.









Returning to understanding why our algorithm works, we apply a sequence of row operations to A to obtain  $I_n$ :

 $(E_k \cdots E_3 E_2 E_1)A = I_n$ 

Thus,  $E_k\cdots E_3E_2E_1$  is the inverse matrix we seek

Our algorithm for calculating the inverse of a matrix is the result of the

Antrix A is invertible if and only if it is row equivalent to the identity. In this case, the any sequence of elementary row operations that transforms A into I, applied to I, generates  $A^{-1}$ .

 $\bullet$  We could use  $A^{-1}$  to solve a linear system

 $A\vec{x} = \vec{b}$ 

We would calculate  $A^{-1}$  and then:

- $\bullet$  As our textbook points out,  $A^{-1}$  is seldom used: comtake a very long time, and is prone to numerical error.
- So why did we learn how to compute A<sup>-1</sup>? Later on in this course, we use elementary matrices and properties of A<sup>-1</sup> to derive results.
- A recurring theme of this course: just because we can do something a certain way, doesn't that we should.

los to force.



in outside.

# 2.2 EXERCISES

Find the inverses of the matrices in Exercises 1–4.

- 1.  $\begin{bmatrix} 8 & 6 \\ 5 & 4 \end{bmatrix}$
- 2.  $\begin{bmatrix} 3 & 2 \\ 7 & 4 \end{bmatrix}$
- 3.  $\begin{bmatrix} 8 & 5 \\ -7 & -5 \end{bmatrix}$
- 4.  $\begin{bmatrix} 3 & -4 \\ 7 & -8 \end{bmatrix}$
- 5. Use the inverse found in Exercise 1 to solve the system

$$8x_1 + 6x_2 = 2$$
$$5x_1 + 4x_2 = -1$$

6. Use the inverse found in Exercise 3 to solve the system

$$8x_1 + 5x_2 = -9$$

$$-7x_1 - 5x_2 = 11$$

- 7. Let  $A = \begin{bmatrix} 1 & 2 \\ 5 & 12 \end{bmatrix}$ ,  $\mathbf{b}_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ ,  $\mathbf{b}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$ ,  $\mathbf{b}_3 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$ , and  $\mathbf{b}_4 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ .
  - a. Find  $A^{-1}$ , and use it to solve the four equations  $A\mathbf{x} = \mathbf{b}_1$ ,  $A\mathbf{x} = \mathbf{b}_2$ ,  $A\mathbf{x} = \mathbf{b}_3$ ,  $A\mathbf{x} = \mathbf{b}_4$
  - b. The four equations in part (a) can be solved by the same set of row operations, since the coefficient matrix is the same in each case. Solve the four equations in part (a) by row reducing the augmented matrix [A b<sub>1</sub> b<sub>2</sub> b<sub>3</sub> b<sub>4</sub>].
- Use matrix algebra to show that if A is invertible and D satisfies AD = I, then D = A<sup>-1</sup>.

# 112 CHAPTER 2 Matrix Algebra

If 
$$[A \ B] \sim \cdots \sim [I \ X]$$
, then  $X = A^{-1}B$ .

If A is larger than  $2 \times 2$ , then row reduction of  $[A \ B]$  is much faster than computing both  $A^{-1}$  and  $A^{-1}B$ .

- 13. Suppose AB = AC, where B and C are  $n \times p$  matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible?
- **14.** Suppose (B C)D = 0, where B and C are  $m \times n$  matrices and D is invertible. Show that B = C.
- 15. Suppose A, B, and C are invertible  $n \times n$  matrices. Show that ABC is also invertible by producing a matrix D such that (ABC) D = I and D (ABC) = I.
- 16. Suppose A and B are n × n, B is invertible, and AB is invertible. Show that A is invertible. [Hint: Let C = AB, and solve this equation for A.]
- 17. Solve the equation AB = BC for A, assuming that A, B, and C are square and B is invertible.
- 18. Suppose P is invertible and  $A = PBP^{-1}$ . Solve for B in terms of A.
- 19. If A, B, and C are  $n \times n$  invertible matrices, does the equation  $C^{-1}(A+X)B^{-1} = I_n$  have a solution, X? If so, find it.

- In Exercises 9 and 10, mark each statement True or False. Justify each answer.
- a. In order for a matrix B to be the inverse of A, both equations AB = I and BA = I must be true.
- b. If A and B are  $n \times n$  and invertible, then  $A^{-1}B^{-1}$  is the inverse of AB.
  - c. If  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and  $ab cd \neq 0$ , then A is invertible.
- d. If A is an invertible  $n \times n$  matrix, then the equation  $A\mathbf{x} = \mathbf{b}$  is consistent for each  $\mathbf{b}$  in  $\mathbb{R}^n$ .
- e. Each elementary matrix is invertible.
- 10. a. A product of invertible n × n matrices is invertible, and the inverse of the product is the product of their inverses in the same order.
  - b. If A is invertible, then the inverse of  $A^{-1}$  is A itself.
  - c. If  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and ad = bc, then A is not invertible.
  - d. If A can be row reduced to the identity matrix, then A must be invertible.
  - e. If A is invertible, then elementary row operations that reduce A to the identity  $I_n$  also reduce  $A^{-1}$  to  $I_n$ .
- 11. Let A be an invertible  $n \times n$  matrix, and let B be an  $n \times p$  matrix. Show that the equation AX = B has a unique solution  $A^{-1}B$ .
- 12. Let A be an invertible  $n \times n$  matrix, and let B be an  $n \times p$  matrix. Explain why  $A^{-1}B$  can be computed by row reduction:

Find the inverses of the matrices in Exercises 29–32, if they exist. Use the algorithm introduced in this section.

- **29.**  $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$
- 31.  $\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \end{bmatrix}$
- 32.  $\begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$
- 33. Use the algorithm from this section to find the inverses of

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Let A be the corresponding  $n \times n$  matrix, and let B be its inverse. Guess the form of B, and then prove that AB = I and BA = I.

34. Repeat the strategy of Exercise 33 to guess the inverse of

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 2 & 0 & & 0 \\ 1 & 2 & 3 & & 0 \\ \vdots & & & \ddots & \vdots \\ 1 & 2 & 3 & \cdots & n \end{bmatrix}.$$
 Prove that your guess is

correct.

- **35.** Let  $A = \begin{bmatrix} -2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{bmatrix}$ . Find the third column of  $A^{-1}$
- 88. Let  $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ . Construct a  $4 \times 2$  matrix D
  - using only 1 and 0 as entries, such that  $AD = I_2$ . Is it possible that  $CA = I_4$  for some  $4 \times 2$  matrix C? Why or why not?