Practice Exam 1

1. Find the domain of the function $f(x)=\sqrt{6-5 x+x^{2}}$.
2. Solve for x if

$$
3 x^{2}+15 x-40=2
$$

3. Let $f(x)=\frac{4 x-2}{\sqrt{x^{2}+10}}$. Find x such that $f(x)=2$.
4. Solve the inequality.

$$
4 x^{2}-40 x+30 \geq-2
$$

5. Compute the limit.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{2(5+h)-1}-3}{h}
$$

6. Find the derivatives
(a) $(\cos (2 x) \sin (4 x))^{\prime}$
(b) $(\tan (\sec x))^{\prime}$
(c) $\left(e^{3 x-x^{2}}\right)^{\prime}$
(d) $\left(x e^{2 x}\right)^{\prime}$
(e) $\frac{d}{d x} \ln \left(\frac{x}{x^{2}-2 x+1}\right)$

Math 1113	Pre-Calc	Spring '16
Practice Exam 1		

1. Find the domain and range of the functions $f(x)=|x|-2, g(x)=3^{2-x}+1, h(x)=\frac{3-x}{\sqrt{25-x^{2}}}$.
2. Find the domain and range of the function

$$
f(x)= \begin{cases}\sqrt{-x} & \text { if }-4 \leq x \leq 0 \\ \sqrt{x} & \text { if } 0<x \leq 4\end{cases}
$$

3. Find $f \circ g, g \circ f,(f \circ g)(-1)$ and $(g \circ f)(2)$ if $f(x)=\frac{1}{x}$ and $g(x)=\frac{1}{\sqrt{x+2}}$.
4. Sketch the graph of

$$
f(x)= \begin{cases}-x-2 & \text { if }-4 \leq x \leq-1 \\ -1 & \text { if }-1<x \leq 1 \\ x-2 & \text { if } 1<x \leq 2\end{cases}
$$

For what values of x is the function $f(x)$ continuous? For what values does the function have a one-sided limit but not a two-sided limit?
5. Find the domain of $f(x)=1+e^{-\sin (x)}$.
6. Find the largest $\delta>0$ such that if $|x-23|<\delta$ then $|f(x)-4|<\varepsilon$ for $\varepsilon=1$, where $f(x)=\sqrt{x-7}$.
7. At what points is the function $f(x)=\frac{x \tan x}{x^{2}+1}$ continuous? Repeat question for $g(x)=\sqrt{3 x-1}$.
8. Find the limits.
(a) $\lim _{h \rightarrow 0^{+}} \frac{(x+h)^{2}-x^{2}}{h}$
(b) $\lim _{x \rightarrow \pi^{-}} \csc (x)$
(c) $\lim _{x \rightarrow 0} \frac{8 x}{3 \sin x-x}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{4}+x^{3}}{12 x^{3}+128}$
(e) $\lim _{x \rightarrow \infty} \frac{\cos x-1}{x}$
9. Suppose $\lim _{x \rightarrow a} f(x)=-7$ and $\lim _{x \rightarrow a} g(x)=0$. Find the following limits
(a) $\lim _{x \rightarrow a} 3 f(x)-g(x)$
(b) $\lim _{x \rightarrow a} \frac{f(x)}{7-g(x)}$
(c) $\lim _{x \rightarrow a} f(x) \cdot g(x)$
10. Suppose $\lim _{x \rightarrow 0}\left(\frac{4-f(x)}{x}\right)=1$. Find $\lim _{x \rightarrow 0} f(x)$.

1. Find the domain, range, and inverse of the function $f(x)=\frac{1-x}{3+x}+2$.
2. Let $f(x)=\sqrt{81-x^{2}}$ and $g(x)=\frac{1}{x-4 \sqrt{2}}$. Find $g \circ f(x)$ and state the domain of $g \circ f$. (10 pts.)
3. Use the formula $\cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2}$ to evaluate $\cos ^{2}\left(\frac{5 \pi}{8}\right)$.
(10 pts.)
4. Find the value for a that makes the function $f(x)$ continuous on $[-1,4]$.

$$
f(x)= \begin{cases}-x^{2}+2 & \text { if }-1 \leq x<2 \\ a x+3 & \text { if } 2 \leq x<4\end{cases}
$$

5. Find the value for x such that $f(x)=e^{2}$, given that $f(x)=3+6^{-x}$.
6. In a certain experiment where a particle moves in a straight line, the position of a particle at t seconds is given by the function $f(t)=1+t^{2}$. Find the average speed of the particle in the first three seconds of the experiment. That is, find the average rate of change of $f(t)$ on the interval $[0,3]$.
(10 pts.)
7. Find the limits.
(8 pts. each)
(a) $\lim _{x \rightarrow 3^{-}} \frac{4 x-12}{9-x^{2}}$
(b) $\lim _{x \rightarrow \pi^{+}} \tan (x)$
(c) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-x+3}{4 x^{2}-\sqrt{x}}$
(d) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-15}{5 x^{3}+12 x-4}$
(e) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{21 x}$
8. Solve for x.

$$
3 x^{2}+5 x+2=x^{2}-5
$$

2. Find the domain of $f(x)=\sqrt{x^{2}+x-6}$.
3. Find the equation of the line tangent to the curve $y=f(x)$ at $x=1$, where

$$
f(x)=\frac{1}{2 x+1}
$$

4. Compute the limit. Show all steps for full credit.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{4-h}-2}{h}
$$

5. Use the formula $\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}\left(f^{-1}(b)\right.}$ to find $\left(f^{-1}\right)^{\prime}(9)$ where $f(x)=x^{3}+1$. Note that $f(2)=9$.
6. Suppose $f(2)=3, g(3)=4$, and that $f^{\prime}(2)=-1$ and $g^{\prime}(3)=2$. Find $(g \circ f)^{\prime}(2)$. Hint: by the chain rule we know that $(g \circ f)^{\prime}(x)=(g(f(x)))^{\prime}=g^{\prime}(f(x)) * f^{\prime}(x)$.
7. Find the derivative of the function.
(a) $f(x)=\pi x-e$
(b) $g(x)=e x+\ln (x)$
(c) $h(x)=\cos (\sin (x))$
(d) $i(x)=\sec ^{2}(x)$
(e) $j(x)=4 \sqrt{1-x}$
(f) $k(x)=(1-x)(1+x)^{2}$
(g) $l(x)=x e^{2 x}$
(h) $m(x)=\ln \left(\frac{2 x}{3-x}\right)$
