Calc I and Algebra Review

1. Evaluate $\left(4^{3}\right)^{\frac{1}{2}} \cdot\left(4^{3}\right)^{\frac{1}{2}}$
2. Write the standard form of the equation of the circle with radius $r=3$ and center $(2,-1)$. (5 pts.)
3. Let $f(x)=\sqrt{x-4}$ and $g(x)=2-3 x$. Find $(f \circ g)(x)$ and $g \circ g(x)$. Simplify your answer for full credit.
4. Compute $\sin (\theta), \cos (\theta)$, and $\tan (\theta)$ for $\theta=135^{\circ}$.
5. For these problems use $f(x)=x^{2}-4 x+3$.
(a) Find the vertex form of the quadratic function $y=f(x)$.
(b) Find the factor form of the function $y=f(x)$.
(c) Graph the quadratic function $y=f(x)$. Be sure to include in your graph the labels for the x-intercepts, y-intercept, and vertex.
6. Find the inverse of the function $f(x)=\frac{2}{3 x+1}$, and give the domain and range of f. (7 pts.)
7. Let $f(x)=\sqrt{3 x-2}$. Find the average rate of change of $f(x)$ as x changes from 2 to 6 . (7 pts.)
8. Simplify the expression $\frac{\frac{3}{x+h}-\frac{3}{x}}{h}$.
9. Evaluate.

$$
\log _{2}\left(4^{3}\right)
$$

10. Write the equation in exponential form, then find the value of y.

$$
\log _{5}\left(\frac{1}{125}\right)=y
$$

11. Find the horizontal and vertical asymptotes of the function $f(x)=\frac{x^{2}-2 x+1}{x^{2}-25}$.
12. Graph the function $y=3 \sec (2 x)$, over two periods.
13. Find all solutions to the equation in the interval $[0,2 \pi)$.

$$
(\csc x-2)(\cot x+1)=0
$$

14. Find the equation of the line tangent to the curve $y=\sqrt{3 x+4}$ at $x=4$.
15. Use the definition of the derivative to compute $f^{\prime}(2)$ where $f(x)=\sqrt{2 x}$. You must use the definition of the derivative for full credit.
16. Compute limits. Express your answer as a value or one of $+\infty$ DNE, $-\infty$ DNE, or DNE.
(5 pts. each)
(a) $\lim _{x \rightarrow \frac{\pi^{+}}{}} \tan (x)$

(b) $\lim _{x \rightarrow \frac{\pi}{3}} \csc (3 x)$

(c) $\lim _{x \rightarrow 3^{-}} \frac{3 x-9}{x^{2}-9}$

(d) $\lim _{x \rightarrow \infty} \frac{4 x^{2}-3 x+2}{(3 x+1)(2 x-3)}$

(e) $\lim _{x \rightarrow 0^{+}} x \ln (x)$

17. A box is to be constructed using two types of material. The material used to build the top and bottom of the box cost $\$ 10 / \mathrm{ft}^{2}$ and the material used to build the sides cost $\$ 6 / \mathrm{ft}^{2}$. If the box must have a volume of $50 \mathrm{ft}^{3}$ determine the dimensions of the box which will minimize the cost and state the minimum cost of the box.
(12 pts.)
18. A right cylindrical tank is filled with water. The tank stands upright and has a radius of 20 cm . How fast does the height of the water in the tank drop when the water is being drained at $25 \mathrm{~cm}^{3} / \mathrm{sec}$?
(12 pts.)
19. Compute the derivative. Continued on next page
(6 pts. each)
(a) $f(x)=\left(x^{2}-5\right)\left(x^{3}-2 x+3\right)$
(b) $f(x)=\left(\frac{x-1}{x+3}\right)^{3}$
(c) $f(x)=\left(e^{\sin (2 x)}-\pi^{2}\right)^{2}$
(d) $f(x)=\ln \left(\frac{\sqrt{3 x-1}}{x}\right)$
(e) $f(x)=\sec (\tan (x))$
(f) $f(x)=\frac{\sin ^{2}(x)+\cos ^{2}(x)}{\sin ^{2}(x)}$
20. Integrate.
(5 pts. each)
(a) $\int 3 x^{2}-4 x+\pi^{2}-e^{2 x}+4 d x$
(b) $\int\left(\frac{1}{\cos 3 x}\right)^{2} d x$
