1. Evaluate $(4^3)^{\frac{1}{2}} \cdot (4^3)^{\frac{1}{2}}$ (5 pts.)

2. Write the standard form of the equation of the circle with radius r = 3 and center (2, -1). (5 pts.)

3. Let $f(x) = \sqrt{x-4}$ and g(x) = 2 - 3x. Find $(f \circ g)(x)$ and $g \circ g(x)$. Simplify your answer for full credit. (5 pts.)

4. Compute $\sin(\theta)$, $\cos(\theta)$, and $\tan(\theta)$ for $\theta = 135^{\circ}$. (5 pts.)

- 5. For these problems use $f(x) = x^2 4x + 3$.
 - (a) Find the vertex form of the quadratic function y = f(x). (6 pts.)

(b) Find the factor form of the function y = f(x). (6 pts.)

(c) Graph the quadratic function y = f(x). Be sure to include in your graph the labels for the *x*-intercepts, *y*-intercept, and vertex. (3 pts.)

6. Find the inverse of the function $f(x) = \frac{2}{3x+1}$, and give the domain and range of f. (7 pts.)

7. Let $f(x) = \sqrt{3x-2}$. Find the average rate of change of f(x) as x changes from 2 to 6. (7 pts.)

8. Simplify the expression $\frac{\frac{3}{x+h} - \frac{3}{x}}{h}$.

(6 pts.)

$$\log_2(4^3)$$

10. Write the equation in exponential form, then find the value of y. (5 pts.)

$$\log_5\left(\frac{1}{125}\right) = y$$

11. Find the horizontal and vertical asymptotes of the function $f(x) = \frac{x^2 - 2x + 1}{x^2 - 25}$. (5 pts.)

12. Graph the function $y = 3 \sec(2x)$, over two periods. (5 pts.)

13. Find all solutions to the equation in the interval $[0, 2\pi)$.

(10 pts.)

$$(\csc x - 2)(\cot x + 1) = 0$$

14. Find the equation of the line tangent to the curve $y = \sqrt{3x+4}$ at x = 4. (10 pts.)

15. Use the definition of the derivative to compute f'(2) where $f(x) = \sqrt{2x}$. You must use the **definition** of the derivative for full credit. (10 pts.)

- 16. Compute limits. Express your answer as a value or one of $+\infty$ DNE, $-\infty$ DNE, or DNE. (5 pts. each)
 - (a) $\lim_{x \to \frac{\pi}{2}^+} \tan(x)$

(b) $\lim_{x \to \frac{\pi}{3}} \csc(3x)$

(c) $\lim_{x\to 3^-} \frac{3x-9}{x^2-9}$

(d)
$$\lim_{x \to \infty} \frac{4x^2 - 3x + 2}{(3x+1)(2x-3)}$$

(e) $\lim_{x \to 0^+} x \ln(x)$

17. A box is to be constructed using two types of material. The material used to build the top and bottom of the box cost $10/\text{ft}^2$ and the material used to build the sides cost $6/\text{ft}^2$. If the box must have a volume of 50ft^3 determine the dimensions of the box which will minimize the cost and state the minimum cost of the box. (12 pts.)

18. A right cylindrical tank is filled with water. The tank stands upright and has a radius of 20 cm. How fast does the height of the water in the tank drop when the water is being drained at 25 cm³/sec?
(12 pts.)

19. Compute the derivative. Continued on next page

(6 pts. each)

(a)
$$f(x) = (x^2 - 5)(x^3 - 2x + 3)$$

(b)
$$f(x) = \left(\frac{x-1}{x+3}\right)^3$$

(c)
$$f(x) = \left(e^{\sin(2x)} - \pi^2\right)^2$$

(d)
$$f(x) = \ln\left(\frac{\sqrt{3x-1}}{x}\right)$$

(e) $f(x) = \sec(\tan(x))$

(f)
$$f(x) = \frac{\sin^2(x) + \cos^2(x)}{\sin^2(x)}$$

20. Integrate.

(5 pts. each)

(a)
$$\int 3x^2 - 4x + \pi^2 - e^{2x} + 4 \, dx$$

(b)
$$\int \left(\frac{1}{\cos 3x}\right)^2 dx$$