Math 1711	Finite Math	Spring ${ }^{\prime} 14$

Practice Exam 2

1. An experiment consists of picking a number at random from the set $\{1,2,3,4,5,6,7,8,9\}$. What is the probability that the number selected is 4 ? larger than 6 ? $A: 1 / 9$
2. Are the following probabilities feasible for an experiment having sample space $\left\{s_{1}, s_{2}, s_{3}\right\}: \operatorname{Pr}\left(s_{1}\right)=.3, \operatorname{Pr}\left(s_{2}\right)=.5, \operatorname{Pr}\left(s_{3}\right)=.3$? A : No
3. TRUE OR FALSE If the probability of a major earthquake in California this year is .65 , then is it true that the odds against an earthquake are 35 to 65 ? A: True
4. An urn contains five white balls and four green balls. An experiment consists of pulling 3 balls from the urn, one at a time without replacement. Find the probability that all three balls selected are green. Find the probability that all 3 balls are white if it is assumed that the last one selected is white. $A: \operatorname{Pr}$ (all green $)=4.8 \%$, and using a tree diagram gets $\operatorname{Pr}($ all white \mid last one white $)=$ $\frac{\binom{5}{3} /\binom{9}{3}}{280 / 504} \approx 21.4 \%$
5. The 15 members of a senate committee will vote next week on an issue: 10 will vote "yes" and 5 will vote "no". If a reporter samples 6 of the senators in order to predict the outcome of next week's vote, what is the probability that the reporter correctly predicts the outcome of the vote? $A: \frac{\binom{10}{6}+\binom{10}{5}\binom{5}{1}+\binom{10}{4}\binom{5}{2}}{\binom{15}{6}}=3570 / 5005 \approx$ 71.3%
6. A die is rolled three times. What is the probability that all three rolls show different numbers? $A: \frac{6 \cdot 5 \cdot 4}{6^{3}} \approx 55.6 \%$
7. A coin is tossed twice. What is the conditional probability that the first toss is a head if it is known that the second toss is a head? A: 50%
8. A basketball player is on the line for a one-and-one free throw chance. If the probability he makes a free throw is 60%, which is the greatest probability: scoring 0 points, 1 point, or 2 points? $A: \operatorname{Pr}(0 \mathrm{pts})=.4, \operatorname{Pr}(1 \mathrm{pt})=.24, \operatorname{Pr}(2 \mathrm{pts})=$. 36 , so 0 pts is most likely.
9. About 5% of all men are colorblind while only 0.4% of women are colorblind. If a person is selected at random from a group of 50 men and 50 women is found to be colorblind, then what is the probability that the person selected is male? A : $\frac{2.5}{2.5+.2} \approx 92.6 \%$
10. A coin is to be tossed at most 5 times. The player wins if, at any point, the number of heads tossed exceeds the number of tails. The player loses if at any point 3 of the tosses were tails. What is the probability that the player wins the game? A: Using a tree one gets $\operatorname{Pr}(\operatorname{win})=\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+2\left(\frac{1}{2}\right)^{5}=68.75 \%$
