Practice Exam 4

1. Find the value of a for which the corresponding system of linear equalities has no solutions:

$$
A=\left[\begin{array}{cc|c}
1 & -1 & 3 \\
3 & a & 1
\end{array}\right]
$$

For which values of a is there a unique solution? Is there any value of a for which there are infinitely many solutions to the system? $a=-3, a \neq-3$, No.
2. Given

$$
A=\left[\begin{array}{rr}
2 & 1 \\
-1 & 3
\end{array}\right] \quad B=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \quad D=\left[\begin{array}{rr}
1 & 2 \\
-1 & -2 \\
2 & 0
\end{array}\right]
$$

find the rref of each of A, B, C, D and find each of the products $A B, B A, A C$, $C A, A D, D A, B C, C B, \ldots$ etc., or say undefined. http://www.bluebit.gr/ matrix-calculator/matrix_multiplication.aspx
3. Let A, B be as in problem $\# 2$. Find A^{-1}. Find the solution X to the matrix equation $A X=B$ using the inverse of $A . A^{-1}=\left[\begin{array}{cc}\frac{3}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{2}{7}\end{array}\right], X=\left[\begin{array}{c}\frac{8}{7} \\ \frac{5}{7}\end{array}\right]$.
4. Write down a 3×3 matrix and find its inverse using the Gauss-Jordan Method. It may take a few tries to find one that is 'not too hard'. One that is easy, about the right difficulty for the test (you should be able to do it in <5 minutes) is

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] . \quad A^{-1}=\left[\begin{array}{rrr}
-1 & 2 & -3 \\
1 & -1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

5. Use the equation $X=(I-A)^{-1} D$ to find the solution to the input-output analysis problem: A simplified economy consists of the two sectors Manufacturing and Energy. The input-output matrix is

$$
\begin{gathered}
\\
M \\
E
\end{gathered}\left[\begin{array}{cc}
M & E \\
.3 & .1 \\
.2 & .25
\end{array}\right] .
$$

How many cents of manufacturing are required to produce $\$ 1$ of energy? Which sector requires the greatest amount of energy to produce $\$ 1$ of output? What
should the production rates be in order for the economy to produce $\$ 3$ million of manufacturing and $\$ 5$ million of energy (in surplus). .1, energy, and they should produce 5.46 m . of manufacturing and 8.12 m . of energy.
6. Use the equations

$$
m=\frac{N \cdot \sum x y-\sum x \cdot \sum y}{N \cdot \sum x^{2}-\left(\sum x\right)^{2}} \quad b=\frac{\sum y-m \cdot \sum x}{N}
$$

to find the line of best fit for the points $(1,2),(2,4),(3,3),(4,4) . y=.5 x+2$
7. Use your answer to the previous problem to answer the question: The table below shows the profit of a company over the last four years. What should the company expect in profit in 2015 ?

	2011	2012	2013	2014	2015
Profit (mil.)	2	4	3	4	$? ?$

4.5 thousand profit expected in 2015
8. Consider the folowing linear inequality constraints:

$$
\left\{\begin{array}{r}
6 x+3 y \leq 96 \\
x+y \leq 18 \\
2 x+6 y \leq 72 \\
x \geq 0, \quad y \geq 0
\end{array}\right.
$$

Graph the feasible set. Find numbers x and y which maximize the objective function $80 x+70 y$ and which satisfy all the above constraints simultaneously.

$x=14, y=4$

