Chapter 5: Counting Problems

1. Inclusion-exclusion principle
2. $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
3. De'Morgan's law
4. $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
5. $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
6. Multiplication principle
7. and = multiply
8. or = add
9. Permutations and combinations
10. $\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}$! / (n-r)!
11. $C(n, r)=n!/[r!(n-r)!$
12. Ordered Partitions $=n!/(n 1!n 2!n 3!\ldots n m!)$

Chapter 7: Probability \& Statistics

1. Normal distribution and Z-scores
2. $\mathrm{z}=(\mathrm{x}-\mu) / \sigma$
3. Exact values:
4. $\quad \operatorname{Pr}(\mathrm{x} \geq \mathrm{a})=1-\operatorname{Pr}(\mathrm{x} \leq \mathrm{a})=$
$1-\operatorname{Pr}(\mathrm{z} \leq[(\mathrm{a}-\mu) / \sigma])=1-\mathrm{A}(\mathrm{a})$
5. $\operatorname{Pr}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b})=\operatorname{Pr}(\mathrm{z} \leq \mathrm{b})-\operatorname{Pr}(\mathrm{z} \leq \mathrm{a})=$ A(b) - A(a)
6. Estimations:
7. $\quad \operatorname{Pr}(\mathrm{x}=\mathrm{a})=\operatorname{Pr}(\mathrm{a}-0.5 \leq \mathrm{x} \leq \mathrm{a}+0.5)=$ $\operatorname{Pr}([(\mathrm{a}-0.5-\mu) / \sigma] \leq \mathrm{z} \leq[(\mathrm{a}+0.5-\mu) / \sigma])=$ $\mathrm{A}\left(\mathrm{Z}_{1}\right)-\mathrm{A}\left(\mathrm{Z}_{2}\right)$
8. Binomial trials
9. $\mathrm{C}(\mathrm{n}, \mathrm{r})(\mathrm{p})^{\mathrm{r}}(\mathrm{q})^{\mathrm{n}-\mathrm{r}}$
10. Approximation of binomial trials by normal distribution
11. Chebychev's Inequality:
$\operatorname{Pr}(\mu-\mathrm{c} \leq \mathrm{x} \leq \mu+\mathrm{c}) \geq 1-\left(\sigma^{2} / \mathrm{c}^{2}\right)$
12. Mean \& Standard deviation
13. \quad Expected value $=E(x)=\mu=n p$
14. $\quad \mathbf{S D}=\sigma=\sqrt{ }(\mathrm{npq})=\sqrt{ }\left(\left[\Sigma(\mathrm{x}-\overline{\mathrm{x}})^{\mathrm{f}} \mathrm{f}\right] /(\mathrm{n}-1)\right)$

Chapter 6: Probabilities using counting

1. Experiments, outcomes, sample spaces, events
2. Sample space $=$ set of all possible outcomes
3. \quad Event $=$ any subset of the sample space
4. Odd in favor/against
5. \quad Odds $=\operatorname{Pr} /(1-\operatorname{Pr})$
6. $\operatorname{Pr}=$ odds $/($ odds +1$)$
7. Calculating probabilities of events
8. $\quad \operatorname{Pr}(E)=n(E) / n(S)$
9. Conditional probability $=$ Baye's Theorem
10. $\quad \operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=\operatorname{Pr}(\mathrm{E} \cap \mathrm{F}) / \operatorname{Pr}(\mathrm{F})$
11. Independent events, if:
12. $\quad \operatorname{Pr}(\mathrm{E} \cap \mathrm{F})=\operatorname{Pr}(\mathrm{E}) \operatorname{Pr}(\mathrm{F}), \quad \mathrm{P}(\mathrm{E})=\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})$

Chapter 3: Linear programming

1.Graphing the feasible set: drawing lines and shading the right half space
2.Finding the corner/vertex where the objective function is maximized/ minimized

Chapter 8: Markov processes

1. Transition matrix
2. $\mathrm{S}_{\mathrm{n}}=\mathrm{A}^{\mathrm{n}} \mathrm{S}_{\mathrm{o}}$
3. Absorbing stochastic matrix
4. $\left[\begin{array}{ll}\mathrm{I} & \mathrm{S} \\ \mathrm{O} & \mathrm{R}\end{array}\right]$
5. Fundamental matrix
6. $(I-R)^{-1}$
7. Stable matrix
8. $\left[\begin{array}{cc}I & S(I-R)^{\wedge}(-1) \\ 0 & 0\end{array}\right]$

Chapter 2: Matrices

1. Inverses
2. $\mathrm{A}^{-1}=1 /(\mathrm{ad}-\mathrm{bc})\left[\begin{array}{c}\mathrm{d}-\mathrm{b} \\ -\mathrm{c}\end{array}\right]$
3. $\mathrm{AX}=\mathrm{B} \quad \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
4. Input-output analysis
5. $\mathrm{X}=(\mathrm{I}-\mathrm{A})^{-1} \mathrm{D}$

Chapter 9: Game theory

1. Strictly determined games/saddle points/optimal pure strategies
2. Saddle point = max of row minimums \& min of column maximums
3. Expected value
4. $\mathrm{E}=\mathrm{RAC}$
5. Optimal mixed strategies
6. $\mathrm{r}_{1}=(\mathrm{d}-\mathrm{c}) /(\mathrm{a}+\mathrm{d}-\mathrm{b}-\mathrm{c})$ $\mathrm{r}_{2}=1-\mathrm{r}_{1}$
7. $c_{1}=(d-b) /(a+d-b-c)$
$\mathrm{C}_{2}=1-\mathrm{c}_{1}$
8. $\mathrm{E}=(\mathrm{ad}-\mathrm{bc}) /(\mathrm{a}+\mathrm{d}-\mathrm{b}-\mathrm{c})$
